
Digital Repository Interoperability: Design, Implementation
and Deployment of the ECL Protocol and Connecting

Middleware
Timmy Eap

Simon Fraser University
Surrey 2400 Central City

Surrey, BC, Canada, V3T 2W1

teap@sfu.ca

Marek Hatala
Simon Fraser University
Surrey 2400 Central City

Surrey, BC, Canada, V3T 2W1

mhatala@sfu.ca

Griff Richards
BCIT Technology Centre &

SFU Surrey
Surrey, BC, Canada, V3T 2W1

griff@sfu.ca

ABSTRACT
This paper describes the design and implementation of the
eduSource Communication Layer (ECL) protocol. ECL is one
outcome of a pan-Canadian project called eduSource Canada to
build an open network of interoperable digital repositories. The
design goal was to achieve a highly flexible, easy-to-use, and
platform independent communication layer protocol that allows
new and existing repositories to communicate and share resources
across a network. ECL conforms to IMS Digital Repository
Interoperability (DRI) specifications and supports four main
functions: search/expose, submit/store, gather/expose and
request/deliver. The ECL protocol builds on the latest standards
and is flexible with respect to metadata schemas and repository
contents. To support easy adoption of the protocol we provide
middleware components for connecting existing systems. The
ECL is currently used in the eduSource network, and we have
begun work bridging with other interoperable initiatives such as
Open Knowledge Initiative (OKI). Based on our experience, ECL
is truly flexible and easy to use.

Categories and Subject Descriptors
D.2.12 [Software engineering] Interoperability

General Terms
Design, Standardization

Keywords
Interoperability, Protocols, Middleware

1. INTRODUCTION
Web technology in education and training has generated several
centralized digital learning object repositories in the last few
years. By itself, a single repository is insufficient to provide an
adequate knowledge base for a learner who wants and deserves a
global body of knowledge. This can only be done through the
joining of all digital repositories to create a network of
knowledge. To promote this sharing and reuse of learning objects
projects such as SMETE (www.smete.org/, Merlot
(www.merlot.org), EdNa (www.edna.edu.au), and RDN
(www.rdn.ac.uk) have put up services enabling individuals and

other repositories to search and retrieve metadata from their
repositories. Consequently, there is an emergence of new
protocols. Rather than leaving application developers dealing with
these emerging protocols, eduSource Canada took a first step
towards improving interoperability by developing a standard
communication protocol (ECL) that is easy to integrate with
existing repositories and is highly interoperable. This was not an
easy task as repositories are implemented on different platforms
and use different metadata schemas. An easy but inflexible
solution would be to tie the ECL with web services technology
and enforce IEEE LOM as a metadata standard. Instead, we
designed the ECL as a neutral protocol that can accommodate
different metadata schemas. Repositories can simply list their
preferred schemas on the UDDI registry and continue to service
only their preferred schemas. Clients can use XSLT to convert
metadata to the schemas that they can work with. To help
developers, we provide a set of XSLT style sheets that optimize
the conversion of metadata and minimize the potential data loss.

The pilot implementation of the ECL is on Java platform and uses
SOAP as a messaging protocol. Implementers of ECL can use a
middleware component called the ECL connector. Our connector
hides the complexity of forming valid ECL messages and exposes
the main protocol functions in the form of handlers that can be
quickly implemented.

2. WHAT IS ECL?
The ECL protocol conforms to IMS DRI specifications[1]; it adds
clarity to IMS DRI and provides definitions in areas where IMS
DRI is not specific enough for the implementation of the protocol.
The ECL defines actions that correspond with IMS DRI main
functions: search/expose, submit/store, gather/expose and
request/deliver. Along with documentation, XML schemas for
each ECL request and response are defined. Developers can use
these schemas to validate their implementation of ECL messaging
protocol.
The ECL extends the IMS DRI protocol to include definitions of
the GATHER service based on OAI harvesting protocol [2]. The
only exception is that GATHER uses IMS/IEEE metadata schema
while OAI uses Dublin Core schema.
Another gray area in the IMS DRI definitions is its
recommendation of Xquery as the search query language. XQuery
is a very powerful query language but the technology is rather
new and many issues are still unresolved—notably the security,
the differences in metadata schemas, and the backend support of
XQuery. Consequently, most existing repositories are not ready to
switch to XQuery databases. To deal with this problem, the ECL

Copyright is held by T. Eap, M. Hatala, and G. Richards.
WWW 2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-912-8/04/0005.

376

used predetermined query patterns. These patterns can be parsed
with any programming language and processed on any relational
database.

To join the eduSource network, developers can download
resources from our Web site (www.edusplash.net/technical/
index.html). These provide all the necessary documentations for
implementing ECL protocol as well as a Java ECL package. Java
ECL is a plug-in Java API that facilitates the implementation and
the deployment of ECL.

3. ECL MESSAGE ANATOMY
The ECL message has two parts: header and payload. The header
contains information that allows an ECL enabled system to
convey a message to its destination: communication id, sender
information, request type, and login information. The payload is
either the content of the request or the response. There are four
types of requests (Search, Submit, Gather, and Request) and four
types of responses: (SearchExpose, Store, GatherExpose, and
Deliver).

4. IMPLEMENTATION
There are two distinct actors for the ECL implementation: the
service provider and the client. A provider is typically a digital
repository that provides ECL services. A client is an application
accessing services provided by ECL-enabled repositories.

4.1 Service Provider
For repositories implemented on a Java platform, the
implementation of ECL is very simple. These repositories should
already have utilities to search and access their metadata
databases. Using our ready-to-use Java ECL connector
implementation, developers implement service handlers for the
services they want to provide and deploy their ECL services. Java
ECL distribution provides an Ant build file that automates the
deployment of ECL onto Apache Axis SOAP engine.
For a repository running on another platform, the implementation
is not much more difficult. Along with the documentation,
developers can use Java ECL as a reference. The only major task
is implementing the utilities for parsing and building ECL
messages using XML. Our experience with Python tells us that an
experienced Python programmer can implement ECL protocol
from scratch in Python in a few days.

We are currently working with the LionShare group to develop
security models for ECL that is flexible and easy to use. A service
provider will be able choose a security model that is most suitable
for its security policy and upload the model information into the
UDDI registry, which will be made available to clients during
ECL service discovery process. The clients use this information to
select the appropriate security model and make necessary
authentication to access the services.

4.2 Client
On the client application side the implementation is also
straightforward. The major requirement is a basic knowledge of
XML. ECL provides definition and schema for each request and
response as well as the WSDL generated by most SOAP engines.

Python, Perl, Java, and .NET have utilities for XML and making
SOAP requests. ECL specifically avoided using SOAP’s complex
type to keep a high level of interoperability. The only input/output
type requirements ECL poses for the transport protocol are string
and file attachment that are supported by most standard SOAP
libraries. Once the developers know how to parse and build ECL
messages, the call to ECL services only requires a few lines of
code, and the WSDL file obtained from ECL-enabled repositories
are usually compatible across all platforms.

5. INTEROPERABILITY
ECL was designed for interoperability; rather than enforcing
IEEE LOM and web services we elected to use an XML
representation and messaging approach.

The ECL connector enables us to connect several repositories
and tools to the eduSource network. In a three-day session with
the developers from CAREO, Explora, Adlib, and Pond
repositories we implemented full ranges of ECL services in
connecting all of these repositories. In addition, we implemented
an add-on interface into our respective end-user tools for
communicating with those repositories (Splash, Explora, and
Aloha). This meeting verified our assumptions about the ECL’s
ease in connecting existing repositories.

The second mechanism supporting interoperability is an ECL
Gateway that provides a framework for bridging ECL with other
protocols. Several ECL Gateways were instantiated to bridge the
ECL network with SMETE, EdNa, and RDN by converting ECL
to the corresponding protocols. Currently we are working on
interconnecting ECL with the OKI-LionShare project [3, 4].
ECL also deals with the interoperability of the metadata. The
protocol itself is agnostic to the metadata standard used. It
provides guidelines for developers to convert metadata from one
format to another. Currently ECL connector supports Dublin
Core, IMS/IEEE LOM (XML and RDF bindings) and new XSLT
conversion stylesheets can be introduced into ECL to support
other metadata formats. Practically, ECL can be used on any
repository.

6. CONCLUSIONS
ECL has achieved its interoperability objectives and shows a
promising future. The protocol is flexible and adaptive. It allows
repositories implemented on different platforms and using
different metadata schemas to connect into a single network.

7. REFERENCES
[1] IMS DRI (2003). IMS Digital Repositories Interoperability

[On-line]. Available at:
http://www.imsglobal.org/digitalrepositories/driv1p0/i
msdri_bestv1p0.html

[2] OAI. The Open archives Initiative Protocol. [On-line].
Available at: http://www.openarchives.org/OAI/

[3] Open Knowledge Initiative [On-line]. Available at:
http://web.mit.edu/oki/

[4] LionShare P2P project. [On-line]. Available at:
http://lionshare.its.psu.edu

377

