
Design of a Crawler with Bounded Bandwidth

Michelangelo Diligenti
Dipartimento di Ingegneria

dell’Informazione
Università di Siena, Italy

michi@dii.unisi.it

Marco Maggini
Dipartimento di Ingegneria

dell’Informazione
Università di Siena, Italy

maggini@ing.unisi.it

Filippo Maria Pucci
Dipartimento di Ingegneria

dell’Informazione
Università di Siena, Italy

puccifili@inwind.it

Franco Scarselli
Dipartimento di Ingegneria

dell’Informazione
Università di Siena, Italy

franco@dii.unisi.it

ABSTRACT
This paper presents an algorithm to bound the bandwidth of a Web
crawler. The crawler collects statistics on the transfer rate of each
server to predict the expected bandwidth use for future downloads.
The prediction allows us to activate the optimal number of fetcher
threads in order to exploit the assigned bandwidth. The experimen-
tal results show the effectiveness of the proposed technique.

Categories and Subject Descriptors: H.3 [Information Systems]:
Information Storage and Retrieval

General Terms: Design, Experimentation, Performance

Keywords: Parallel Web Crawlers, Bandwidth Optimization

1. INTRODUCTION
The design of efficient crawlers is a key issue in the design of

Web search engines [1]. Whereas the crawlers of large search
engines can exploit dedicated network connections, departmental
search engines usually share the network bandwidth with other ser-
vices. For this reason, bandwidth control is a key point of crawler
design. The design of the bandwidth control policy must achieve
two contrasting goals. First, the crawler should not hinder the users
who share the connection; second, it should exploit completely the
assigned network resources.

Recently, efficient crawling strategies have been studied either
based on the importance of the documents [2, 4] or on the topic of
the pages [3, 5]. Focused crawlers aim at maximizing the quality
of the retrieved resources but do not consider the instant bandwidth
in use. Instead, bandwidth control can be achieved by optimizing
the number of parallel downloads [6].

In this paper, we propose a policy to control the bandwidth of a
crawler, which is particularly suited for small focused search en-
gines. The crawler collects statistical data on the transfer rates of
each server, which are then used to decide the optimal number of
parallel downloads.

2. THE ALGORITHM FOR BANDWIDTH
CONTROL

We assume that each URL is assigned a score, which measures

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-912-8/04/0005.

the estimated importance of the related document. The crawler se-
lects the next URL to download by popping it from a priority queue
sorted according to this score. In the case of focused crawlers, the
score may represent the probability that the document is on a de-
sired topic or that it is on a path leading to relevant pages.

In our design, the crawler is composed of a set of fetchers and a
fetcher manager. Each module is run as a separate thread and the
pool of fetcher threads are created upon startup. A fetcher waits
until the manager activates it for retrieving a given URL. Then it
performs an HTTP request to the appropriate Web server and, af-
ter having transferred the document, it returns to a wait state. The
manager implements the crawler control policy by feeding appro-
priately the fetchers. The manager selects the URLs to be retrieved
using their priorities and it activates the optimal number of fetchers
to exploit the assigned bandwidth.

In order to select the next URL u, the manager estimates the
bandwidth B(u) which a fetcher is expected to consume by retriev-
ing the document u. When the download is completed, the manager
can measure the actual transfer rate M(u) and use this value to up-
date its estimate of the server speed. The manager can compute
the expected total transfer rate of the crawler CB as

∑
u∈S B(u),

where S is the set of the documents that are currently assigned to
the fetchers.

Assuming that the crawler has already activated the optimal num-
ber of fetchers, when a fetcher completes its current download uc,
a slot of bandwidth becomes available to start one or more down-
loads. Thus, the crawler bandwidth is updated as CB = CB −
B(uc) and the manager searches the URL queue for a document ud

such that the estimated bandwidth will remain below the assigned
threshold L while downloading it, i.e. CB + B(ud) ≤ L. The
search starts from the top of the queue and continues up to a given
maximum depth maxd, in order to consider only the documents
with higher priority. If the search is successful, the manager acti-
vates a fetcher to download ud, otherwise it stops and waits for the
completion of another download. If the expected bandwidth of the
new download does not consume completely the available slot, the
queue is searched for further candidates. The algorithm to activate
the fetchers is the following.

1. Set d = 0

2. Get the document ud at depth d in the URL queue

292



0

20000

40000

60000

80000

100000

120000

140000

160000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

byte/s

Figure 1: Measured bandwidth (continuous line) and predicted
bandwidth (dotted line) in a forty seconds time window.

3. If CB + B(ud) ≤ L, assign ud to an inactive fetcher and
update CB = CB + B(ud)

4. Set d = d + 1

5. Repeat step 2 until CB ≤ L or d = maxd

The manager periodically checks the queue to avoid the starva-
tion of the fastest servers (e.g. those servers whose transfer rate
exceeds the threshold L).

The statistics on the server transfer rates are stored in a lookup ta-
ble indexed by the server IP address. The transfer rate is measured
dividing total number of transferred bytes by the time interval from
the issue of the HTTP request till the completion of the document
download. This measure considers both the network delivery la-
tency and the server response speed. Thus, the measured transfer
rate depends both on the characteristics and state of the network
links connecting the machine running the crawler to the server and
on the speed and current load of the server machine itself. Since the
network state and the server load can vary during time, we decided
to model this dependency by assuming a hourly distribution: we
estimate the bandwidth B(IP, h, w) for each hour h = 0, . . . , 23
both for working days (w = 1) and holidays (w = 0). This yields
a total of 48 values for each server. We found experimentally that
this assumption guarantees sufficient accuracy in the estimates. We
decided to use a discrete distribution to reduce the algorithm com-
plexity.

The values B(IP, h, w) are updated after each download by us-
ing the measured bandwidth M(IP ). If the measure is obtained at
time t (in minutes) of the day, each estimate is updated according
to

B(IP, h, w) = (1−α(t−60h))B(IP, h, w)+α(t−60h)M(IP ),

where α(y) = key2/σ2
, being k and σ design parameters, and

w is chosen accordingly with the current date. This formula was
derived assuming that the bandwidth measured at time t affects the
estimates for the parameters according to a Gaussian function α(t).

This approach to bandwidth prediction is feasible for small de-
partmental and focused search engines, which are likely to repeat-
edly contact only a limited set of servers.

3. EXPERIMENTAL RESULTS
In order to evaluate the proposed algorithm, we decided to force

the crawler to download the URLs contained in a predefined queue.
This approach allows to compare the results since the same queue
is used for all the tested settings.

In the first experiment, the bandwidth limit was set to 140KB/s
and the actual bandwidth was measured every second. The parame-
ters used to update the estimates were k = 0.3 and σ = 120, while
the maximum search depth maxd was set to 6. Figure 1 shows that

0

20000

40000

60000

80000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

Figure 2: Measured bandwidth with maxd = 6 (continuous
line) and with maxd = 2 (dotted line).

0

50000

100000

150000

200000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

B
yt

e/
s

Figure 3: Measured bandwidth for a crawler with simple con-
trol on the number of fetchers.

the predicted bandwidth (dotted line) is close to the actual band-
width (continuous line) and it is always below the assigned thresh-
old.

The choice of the maximum search depth maxd affects the ac-
tual use of the available bandwidth, since by using a higher search
depth it is more likely to find a download which fits the available
slot. Figure 2 compares two runs of the crawler with maxd =
2 (dotted line) and maxd = 6 (continuous line). The experi-
ment proves that a larger maxd improves the average bandwidth
(71, 788 for maxd = 6 versus 64, 562 for maxd = 2). How-
ever, when maxd increases, some URLs with a smaller score are
downloaded before URLs with a lager score.

Finally, we compared our method with the one proposed in [6].
In this case, the bandwidth is controlled by stopping a fetcher when
the actual bandwidth is above the limit and by starting a new one
when it is below the limit. Figure 3 shows that the control is less
accurate and the bandwidth oscillates considerably.

4. CONCLUSIONS
In this paper we have presented a technique to control the band-

width of a crawler. The approach is particularly useful for small
and focused search engines and the experiments, even if prelimi-
nary, have showed its effectiveness.

5. REFERENCES
[1] A. Arasu, J. Cho, H. Garchia-Molina, and S. Raghavan. Searching the web.

ACM Transactions on the Internet Technologies, 1(1), 2001.
[2] J. Cho, H. Garcia-Molina, and L. Page. Efficient crawling through url ordering.

In Proceedings of the 7th International Conference on the World Wide Web,
1998.

[3] M. Diligenti, F. Coetzee, L. Lawrence, C. L. Giles, and M. Gori. Focused
crawling using context graph. In Proceedings of the 27th Conf. on Very Large
Data Base, 2000.

[4] M. Najork and J. Wierner. Breath-first search crawling yields high quality pages.
In Proceedings of the 10th International Conference on the World Wide Web,
2001.

[5] J. Rennie and A. McCallum. Using reinforcement learning to spider the web
efficiently. In Proocedings of the International Conference on Machine
Learning, 1999.

[6] V. Shkapenyuk and T. Suel. Design and implementation of a high-performance
distributed web crawler. In Proceedings of the 18th International Conference on
Data Enginering, 2002.

293


