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ABSTRACT

Web services makeinformation and software availade progam-
mdically via the Internetand may be used asbuilding blocks for
applications. A compsite web serviceis one that is built using
multiple comporentweb savicesandis typically specifiedusing a
language such asBPELAWS or WSIPL. Onceits specificaton has
beendeveloped,the compasite sevice may be orchestrated either
in a centralized or in a decentralized fashiom. Decentralized or-
chestraton offersperformancemprovementsn termsof increased
throughput andscalability ard lower respasetime. However, de-
centralized orchestrationalso brings additiond compexity to the
systemin termsof errorrecovery andfault handing. Further, incor-
red design of adecenralized systemcanleadto potential deadlock
or nonoptimalusag of system resouces. This pape investigates
build time and runtime issuesrelatedto decentralizedorchestra-
tion of compasite web services. We supmrt our desgn decisiors
with performare resultsobtainedon a de@ntralizedsetupusing
BPH_4WSto descibe the compasite webseavicesandBPWS4Jas
theundealying runtimeenvironmert to orchestratehem.

Categories and Subject Descriptors
H.3.5[Information Storage and Retrieval]: Online Informaion
Services—Y\eb-based services; D.1.3 [Programming Techniques):

Concurrern Programming—Distributed Programming, Parallel Pro-
gramming

General Terms
Dedgn, Performaiee, Experimentation

Keywords

CompositeWeb Services, Decertralized Orchestation, Code Par-
titioning, BPELAWS

1. INTRODUCTION

Websenices encagulateinformation, softwareor other resou-
ces, and makethemavailable over the network via stardardinter-
facesand protccols [10]. Compex web services may be creaed
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by aggregatingthe functiorality provided by simplerones.This is
referredto as service composition and the aggregatedweb senice
becomesa composite web service.

Composite websavicesmay be developedusinga speification
language such asBPEL4WS [2, 13], WSIPL [8], WSCI [5], etc
ard executed by anengne such asBPWS4J[1]. Typically, acom-
posite web servicespecification is executedby a sinde coordina-
tor node. It receivesthe client requests,makes the requred daia
transfamationsandinvokesthe commpnent web servicesasper the
specification. We referto this moce of executionascentralized or-
chestraion. The coadinatornode is respnsiblefor coadination
of all dataand cortrol flow betweenthe companerts, and hence
becomesa performartebattleneck. All datais transferrecetween
the various compmentsvia the coardinator noce insteadof being
transferredlirectly from the point of gereraton to the point of con
sumption. This leadsto unnecessanraffic on the network. In ad
dition, it is possiblethatawebservicegeneaates alot of datathatis
irrelevant to the compositeservice yet this daawill betransferred
to the coordinaor nodewhereit is discarde, therebyputting un-
necessaryoadon thenetwork. Thesefactorsleadto poor scalabil-
ity andperformane degrachtion at high loads.

Specifyingacompasite senice usingalanguace like BPELAWS
hasinterestingamificaions. The spedficationcanbeanalyzedus-
ing techniquessuch as programanalyss [16], petri-nets[21],etc.
The dataandcontrol deperden@sbetweenthe compamerts canbe
amalyzedandthe code canbe partitonedinto smdler commneris
thatexecuteatdistributed locations. Wereferto thismodeof execu
tion asdecentralized orchestation. In deceiralized orchestraion,
thereare multiple engines, eachexectuting a compasite web ser
vice specification (a portionof the original compositeweb senice
specificatiion but conpletein itself) at distributed locations. The
enginescommuricatedirectly with ead other(ratherthanthrough
a certral coadinata) to transferdataand control whennecessary
in an asynchronaus mamer It may appear that the introduction
of additional enginesin the execution pathwould adverselyaffect
performance however deentralizedexecttion bringspefformance
benefits for thefollowing reasons:

e Thereis no centralizeccoadinatorwhich canbe a potential
battleneck.

e Distributing the dataredwcesnetwork traffic and improves
transfertime.



e Distributing the controlimproves concurengy.

e Asynchranous messagig betweerenginesbrings bendits of
better throughput andgraceful degradation [11].

Furthermoe, de@ntralizedorchestratiommight be the only way to
compaseweb senicesin corstrained data flow environments(e.g.
business-to-bisiness scerarios) where datamight flow only in a
given direction due to busines corstraints. This inevitability of
decertralized orchestratiorin constraineddata flow ervironments
and the potertial performane berefits to begainedthroughdecen-
tralizedorchestraton motivated usto explore it further.

While decerralization brings performarce berefits, it alsoin-
creasesthe compleity of the systemand posesmary build time
ard runtime challenges.It requresmadificaionsto the infrastuc-
tureto exeautetheservice,build time and runtime suyppart for error
handing andreoovery, ard tecmiquestools for codepartitioning.
These complex build time and runtimeissieshave to be properly
addressd in order to exploit the full performance berefits of de-
centralization.

In this paperwe identify various runtime and build time isswes
in decenralized orchestration of compositeweb savicesanddis-
cusssoluions to addressthem The build time issuesdisaussedn
Section2 include:

e determining how to efficiently partition the certralized spec-
ification

e distributing errorhanding coce aaosspartitions so asto cor-
rectly andefficiertly hande runtimeerrars

Theruntimeisswesdiscussd in Section3 include:

e using anefficiert protocol for engineto engne commurica-
tion

e internd design detailsof the engineto avoid potertial deal-
locks

e infrastructue for errorhandling and recovery

We experimentally evaluate the performance of decentralizedor-
chestraton and the effect of variousruntimeandbuild time isstes
on performane. TheexperimenswereconductedusingBPELAWS
to describethe composte web sevice andBPWS4Jto orchestrate
it. Theseresuts are preentedin Sectbn 4. The relatedwork is
summarizedn Secton 5 followedby corclusiors and futurework
in Section6.

2. BUILD TIME ISSUES

Thissedion explainsdecentralizedrchestrationby takingasam
ple compositeweb service specificaton anddecentralzing it. We
alsodescibe thevariousbuild time isstesthatcome up duringthis
process. For the purposeof illustration we usea compsite web
savice — the FindRoute service whosetaskis to find the driving
directions from the addressof onepersonto that of othe. It takes
asinput the namesof the two pele, getsandcallatesthe neces-
say informationfrom threecompanert web servicesand retuns
thedriving directiors from thefirst addressto the secand address.

Centralized Orchestration. In centralizedorchestraton, the
FindRoute compositeservicerecevestwo namesamel andname2
from a client, then serds namel to a web service AddrBook(1)
which returnsthe address,addr1, of namel. Concurently, Find-
Route serdsname2 to awebsenice AddrBook(2) whichreturnsthe
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addressaddr2, of name2. From thetwo addresseseturned Find-
Route extractsjust the city and zip of thetwo addressesand send
this to a web serviceRoadMap which computesdriving directiors
from one location to the other. Thesedirectiors are returnel to
the client. The serviceis graphically representedin Figure 1(a)
and the correspmding (psewlo) BPELAWS specification(referap-
pendix A) is shown in Figure 1(c).

Decentralized Orchestration. In deceriralizedorchegration
of FindRoute service, the BPELAWS cock is partitionedinto four
patitions- DO, D1, D2 and D3, which areexecued by four BPWS-
4J erginesat the four locaions. Figure 1(b) graphically depcts
thedecentralizedrchestraton of FindRoute Service andthe corre-
spondng psaudo-BPELAWS specificatioris shown in Figure1(d).
The DO partition receives two namesnamel and name2 from a
client,thensend namel to partition D1 and name2 to partition D2
asynchronously in paralleland thenwaits onacdlbackr ecei ve
for theresultsfrom D3. The D1 partition invokesweb serviceAd-
drBook(1) synchromouslypassimg in namel astheinput andrecev-
ing addressaddrl, of namel in return. Similarly, the D2 partition
invokesweb serviceAddrBook(2) with name2 astheinput andre-
cevesaddessaddr2, of name2 astheregonrse.Only therelevart
city and zip information is extractedfrom theadd-essand sentfrom
D1 to D3 and similarly from D2 to D3, thus redicing the data on
thenetwork. The D3 partiion waits till it receivesthe inputs from
both D1 andD2 and theninvokesthe RoadMap websenice thatre-
turnsthe driving directions from oneaddessto the other The D3
partition returnsthedriving directiors backto DO partition through
acadlback. DO, on gettingthe callback recavesthedriving direc-
tionsand send thembackto theclient.

2.1 Code Partitioning

In decernralized orchestration the various interactionsbetween
thecompmerts areandyzedandthe compositeweb servicespeci-
ficationis partiioned using proggamanalyss techmiques. We have
built a tool tha does this task auomatically The partitons are
full-fledged compositeweb senice specificationghemselhes, that
executeat distributedlocations(preferablycollocatedwith the web
senices) and can be invoked remdely. Our tod also geneates
theWeb Service Description Language (WSDL) [9] de<riptors for
ead of thesefragments.The WSDL descriptorspermitthemto be
deployedandinvokedlike ary stardardwebsenice.

The code parttioning algarithm identifies the numbe of final
partitions basedon the number of companentweb senicesin the
composte web senice. Thenthe centralizedcodespedfication is
patitioned acrossthe compnents in sucha mamer thatthe data
beng passd betweercomporentsis minimizedand the parallelsm
ammgd the componentsis maxmized. The build time processof
decentralizationessetially corsists of three stefs - (1) autanatic
paallelization and code partiioning, (2) synchrorization andysis
ard (3) code generation. Although BPEL4WS permitsspecifica-
tion of explicit parallelsm, we still apdy data flow aralysis[16]
tecmiquesto determine the maximum parallelismandthenapply a
costfunction to determine the most efficient codepartition - which
may or may not make useof all possibleparallelsm After the
code has bean patitioned the interadions betwea the partitions
are aralyzedto determine the bestsyndirorization protomls to
use between the partitions [17]. Oncethis andysis is complete,
the BPELAWS code for the partitions is generated an exanple is
shown in Figure 1 (d). Theissuesof code parttioning are men
tioned here for sakeof completeressbut we do not addessit in
this paper. Thesearediscussedn an earlier paper[16].
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Figure 1. Centralized and Decentralized Orchestration

2.2 Handling Errorsat Build Time

The useof asyrchrorousmesagingbetween the different com-
posite web servicepartitions makeserror propagationin a decen-
tralizedsetupmore complex. BPEL4AWS provides a mechanismto
explicitly catcherrorsand handle themby executing subrouines
specified in fault hardler elemetts. In deentralzed orchestraton,
one of the challenges is to partition the existing fault handlersin
thecompositewebservicespecificaton correctlyso tha they retan
ther semanticsevenafter partitioning. If thefault hander includes
sendinga mesageto someothercompaonert in the composte web
savice (which now execues on a differert nodedueto decentral-
ization), changes have to be madeacmrdingy.

For exanple, therecanbeafaut handerin the certralized Find-
Route speificationin Figure 1(c) which cachesall errorsarising
out of theaddessbook webserviceinvocaion failures and retuns
anerrar respasebackto theclient without invoking the road route
savice. It might look sometling like this:

sequence
nl. nane=c. nanel
i nvoke(Al, n1(nane), al{ph, street, city, zi p})
throw (‘*‘addrBookFailure' ')

end- sequence

faul t Handl er s
catch (‘' addrBookFailure' ")
errorMsg. meg = ‘‘ Address Book service not available’’
reply(client, errorMsg)

end- faul t Handl ers

While partitioning the centralizedspedficationthis fault hardler
should be movedto the partitionscortrolling the addres book sea-
vices(partiions D1 and D2). Furthermore thefaulthardler shoud
now send an error messge to the partition D3 sinceit might be
waiting for an input from one of the addessbook services(pro-
vided that the other addressbook senice executedsuaessfully).
The error messag here could be in the form of an invalid input
(e.g. valueof -1 for the zip code). In this casethe faut hardler
might look somehing like this:

faul t Handl ers
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catch (‘‘addrBookFailure' ")

rl.zip = -1

invoke(D3, ril{city,
end-faul t Handl ers

zip})

Partition D3 cancheck for the erroreows input andsendbadk an
errorto thefirst noce.

flow
recei ve(DL, r1{city, zip})
receive(D2,r2{city, zip})
end-f | ow
if (rl.zip >0 && r2.zip >0)
r.cityl=rrl.city; r.zipl=rl.zip
r.city2=r2.city; r.zip2=r2.zip
invoke(RR r{cityl, city2, zipl, zip2},dir{route})
end-if
el se
dir.route = '‘Address Book service not available’’
end-el se
i nvoke( DO, dir)

Another challenge is to insat additioral fault handers so that
errorspropagatecorrectly in the deentralizedsetup. This is not
anissuein centralizedsetupas the control remairs certralizedand
all errorsare propagatedbackto the client gracdully. In caseof
decentralizationgrrorsarelocalizedatther respetive node of oc-
currence due to the useof asynchranous messamg. This canbe
alleviatedby insertingadditional faulthardlersin eachof thecom-
posite servicefragments. Thesefault hardlers canthen either in-
voke a certralized entity or an actiity waiting for aninput from
thefailed actvity informing it about the error. The errormessage
canthen be sentbackto the client. For example,the fault hander
describedabore, should beinseatedin thepartiions D1 andD2 and
thecorrespording checkshould be madein partition D3, evenwhen
theorigind centralizedveb servicespedfication doesnt have ary
faut handler



3. RUNTIME ISSUES

Decantralized orchestraton involves patitioning a certralized
compasite servicespecificaton into smallerpartitions that arefull-
fledged web savices. Each partition requiresa runtime environ-
ment (a workflow enginé for execution. Thus decentraized or-
chestraton introducesmultiple enginescommuricating with each
other. This commurication appearsas a web senice invocationin
each partition (typically as the last stepof the flow). Differentpa-
rameters affect the efficiency of this communication- the protccol
used, the threadng modelsusal in the engine, etc. Furthermore,
a runtime infrastructureis also neededfor error propagationand
errar recoery in decertralized orchestratiorwhich is comgicated
duetheuseof asyncronaus messging. We discusghesissiesin
detailin thefollowing subsectiors.

3.1 Application Server and Messaging

Compositewebsenicesareexecuedby an engne suc asBPW-
S4J.Theengneitselfis hostedasaweb senice insidea web se-
vice container The implementationof a web servicecortainer
depenms on the type of protocol it usesto communicde with its
clients. SOAP-overHTTP and SQAP-over-JMS are the common
messagingprotocds usedfor invoking web services. Therefore,
we will restrictour discussio to thesetwo protomls.

3.1.1 HTTP based Application Server

HTTP is a synchronaus protocol, whereasdecentralized orches-
trationrequiresasynchronaus messaging “Pseudd’ one-way mes-
saying canbe achieved over HTTP by sending a dummy regporse
to the client. When a web senice is invoked using HTTP asthe
messagingprotacol, its hostingweb servicecontaine is typically
implementedas a servlet, hostedinside a serdet container As
savlets were designel for synchrorous request-respnseinvoca-
tions, a limitation of the serdet containeris thata regporsecanrot
be sert back to the client unlessthe seavlet threadcompetesthe
processig of the messag. Thus,a servletcanrot accet arequest
in athread then closethe conrectionandcontinte to processthe
requestasyrchrorously in the samethread. As a result, a client
is blockedas long asthe requestis beng processd at the sener.
The BPWS4Jenginesolvesthis problem by maintaininganinter-
nal threadpool (which is indeperdert of the servletthreadpodl).
Whenthe engine recevesan asyrchranous request,it puts the re-
guestinto aninternalqueue,creaes a dummy resporseandsend
it back viathe savlet thread. The serdet threadis thenfreeto re-
ceve anew reques and theclient is alsonot blocked.Meanwhile,
the asyrchrorousrequestis processedn oneof the thread from
theinternal threadpool. Both the threadpools are of compardle
size

3.1.2 JMShbased Application Server

Whenawebserviceis invokedusing JMS asthe messagig pro-
tocol, the hostingweb servicecortainer is typically implemened
asaMessag DrivenBean(MDB) [3]. This MDB is hostedinside
an EnterpriseJava Bean(EJB)cortainer. The EJB containerhasa
single thread (listene thread listeningon a specified topic/quaie.
It alsohasathreadpod to processtheincomingrequests(process-
ing thread pod). Onreceving arequest,the listene threadputsit
on an internd queue and cortinueslisteningfor moreincomingre-
quests.Oneof thethread from the processinghreadpool picks up
thisreques andprocessest. If therequestis synchrorous, the pro-
cessingthread,after comgeting its processing extractsthe client
addressrom thecontext andsend thereply. If the requestis asyn-
chronaus, nothing is sert backto the client.
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3.1.3 Performance Comparison

At afirstglance,there is not much differerce betweenanasyn
chronaus messagéhardled by an EJB cortainer or a savlet con
tainer In both the casesa listerer threadrecevesa request,puts
therequestinto a quele and continwesto listenfor morerequests
while the requestis proaessedn a threadin the badkground. In
fad, at low loadsthe perfaomanceof a decenralizedorchesration
over HTTP is similar to a decentralizedorchestrationover JMS.
However, athigh loads, experimertal andysis(details in Section 4)
shows that decentralized execaution over HTTP farespoorly com-
paedto aJMSsolution Therea®nis asfollows: Whenanengine
D1 send an asyrchrorousHTTP messagdo andher engine D3,
D3 parseghe request, deerminesthat it is asynchronaus, putsit
into aqueueand immedately returnsadummy respaseto D1. At
low loads this processtakeslessthan 30 millisecondson anaver-
age. At high loads, when the systemis loaded and mary thread
areexeauting corcurrently it hasbeen obseved thatthe thread at
D3 gets descledued beforeit canserd the respamse and so the
turnaraundtime can beashigh as2000to 3000 millisecords. The
conseqiene of this is two-fold. Both the processinghreal atthe
serding engine andthe recaver threal at the receving engne are
blocked for longe periods of time. This reducestheir capacity to
processotherrequestsand hercethethroughput redwcesandthere-
sponsetime increaes. Asynchranous web serviceinvocationover
JMS doesnot suffer from this limitation as it does not have to send
back adummy messag.

3.2 A Potential Deadlock

As aresut of decenralized orchestation, a potential deallock
situationmight ariseunderthefollowing conditions

e The engine mairtains a processingthreadpool i.e. it does
not spavn anew threadwheneverthereis anew reques, and

e Compositeweb serviceinstan@shave threadaffinity.

Corsider a BPEL4WS programthat hasa correlatedr ecei ve (a
recave waiting for an event with correlationinformation that is
usedfor locatiing anexising compositeseniceinstancgasin DO in
Figure 1(d). Thefirstr ecei ve instantiatesa BPWS4Jcompdsite
senice instancen athread. This instan@ canrot exit until it gets
a messag that satisfesthe seconl r ecei ve andhenceblocks a
threaduntil these@ndmessagis received Whenthe second mes-
sage arrives, it is pickedup by andherthreadfrom the same thread
pool. On parsing the messge, the seond thread determiresthat
the messge neals to be “patched” into an existing thread wakes
up the correlatedthreadand returns. Now let the threadpool size
beN. If thereareN corcurrert requests thenall the N thread will
be blocked waiting on the secand r ecei ve. When a correlated
messigecomesin, it will beput into the quele. However, sinceall
the threals areblocked it will never be removed from the queue
ard the systemwill gointo a deadlock

A simple solutionis to spavn a new processingthrea for each
incomingrequest.In thisscenaio, the processinghreal podl is not
mairntained andthe systemspaws a threal as ard whenrequired.
This appoachhas major dravbacks. The time requiredto create
ard destoy the threal is more thanthetime requiredfor allocating
athreadfrom athreadpool. Further, in this situation,the contairer
(servletor EJB asthe casemay be)is nat alle to cortrol the load
on the system andthe number of thread in the systemwill grow
arbitrarily astheloadincreasesThisadversehaffectspeformance
asthe systemhaslimited CPUMmemoryresoucesarnd pefformance
deteriorates whenthe numberof threadsbecomevery large[23].

A secaod sdution to the deallock prodem is to remove thread
affinity. Whenever a compasite serviceinstarce blocks on acorre-



latedr ecei ve, theenginesavesits stateand theprocesgng thread
is releasd. In this case, the processingthreadsare not blocked.
This soluion hasthe adwantagethat even though mary compos-
ite service instances may be blockedon r ecei ve, no thread is
blocked. This permits the systemto seave arother requestand
hencethe systemcan make full useof the thread pool which is
a limited resouce. A seriousdrawbackof this sctemeis the in-
creasedprocessingtime as the composite serviceinstarce state
needso besaved atead correlatedr ecei ve andreloade when-
ever it getsa correlatedmessige. Anotherdisadvantageis the in-
creasedmemay requiremat to save the statesof all blocked com-
positeserviceinstancs.

A third sdution to thedeadlak problemis to have separat@ro-
cessingthreadpools for the messagegrocessingand messagere-
ceving threads. This way, the incoming request will be processed
by a se@ratethread pod andthe correlatedmessgewill be pro-
cessedvy adifferentthreadpod. As sconasthecorrelatednessag
receiving threaddetermineshe compositeserviceinstan@ waiting
for themesagejt hands over the messag to the blockedprocess-
ing threadandthe blockedthreadresumeswork. Since, the cor-
relatedmessageaeceiing thread is not doing much processing(it
merely locatesghe compositesavice instancewaiting for this mes-
sage) only a small number of threals are required in this thread
pool. Theaetcally, only one threadin this pod is sufficient to
breakthe deadock. The disadwantag with this solutionis that the
processig threadsare still blocked on the receéve. As moreand
more threadsareblocked, the throughpu of the sydemgoesdown.

A fourth solution to the deadlock problemis to sgit the com-
positeserviceparttion such tha the correlatedr ecei ve andthe
remaining processingis moved to another compasite servicepar-
tition. This spitting canbe done auomatically during code pa-
titioning. Hence, differert compdsite serviceinstarcesgetcreaed
for incomingrequess and for callbaks. Here theinitial compsite
savice instane receivesarequest,doessomeprocessig, makesa
requestand exits. The correlatedmessageés received by anaher
compasite senice instarce in anothe thread which doesthe rest
of the processingand send the resporse backto the client if re-
quired. For example, DO of Figure 1(d) canbe sgit into DO1 and
D02 asfollows:

DO1:

recei ve(client, c{nanel, nane2})
nl. name=c. nanel
n2. name=c. nane2
flow
i nvoke(D1, n1{ nane})
i nvoke( D2, n2{ nane})
end-fl ow

DO02:

receive(D3,dir)
i nvoke(client,dir)

Thus, the BPEL4AWS conposite senice partiton is split into
two sepratepartitions, suchthatneitherhasa callbackr ecei ve
within the partition. In this case,sincethe processingthreal never
blocks, thereis no queston of deadock. Further the throughput
alsoimprovesasevery threal is either busy doing usefulwork or
waiting for a requestand no threadis blocked unableto do use-
ful work. This scremeensuresoptimal usag of systemresaurces.
However, this schene hasone disadwantag - context informaion
relatedto the client needsto be propagaed from theinitial thread
to thefinal split composte serviceinstarce alongthe call graph.

The first two sdutions discusedhererequire chargesto exist-
ing serdet contairer implemenations. The first caserequiresthe
savlet cortainer to crede a threa per request insteadof using
athreadpod. The secad solutionrequiresthe cortaineror the
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BPWS4Jengine to be akde to swapa running processin a thread
to be swappedout of the thread pod whenit blocks on a callback
ard be swappedin againwhenit is read/ to run. The remaining
two solutiors can be used without any modifications to existing
systems. Herce, thesesdutions arepreferalte. We have evaluated
thepeformanceof thethird andfourth solutionsand the resultsare
discissedn Secton 4.

3.3 Error Propagation and Error Recovery

In decentralized orchesration the ertire stateof the original
composte webserviceis distributedacressdifferent nodes and this
makeserrorrecovery a comple task. It brings in issuesrelatedto
transation procesing, which hasbeenan adive areaof research
ard mary efforts like WS-Trarsaction[7], BTP [4], Transactiorl
Attitudes[20] areunderway to sdve this problemfor certralized
orchestratbn of compsite web savices. We restrict our discus-
sion to problemsthat are pealliar to decentralizedorchesration
and proposea simpleapproahto solve errorhanding and recovery
without concerring ourséveswith trans&tion processing.

We discussd build time isstesin faut handing and forward
propagationof errars in Secton 2 . However, in certaincasest
might beeaser and more reliable to propagatethe errorto a central
ertity that hassomeknowledgeabaut the state of the entirecom-
posite savice. The certral entity canthen stopall the compasite
senice partitions that are currently execuing. Knowing the stae
of the overall compasite websevice alsohelpsin recovering from
anerror, asundo operatiors for all the adivities that have already
been completedneedto beinvoked Thus, runtime monitoring of
the individual compsite sevice partiions on different nodes to
calcdate an estimate of the overdl compasite serviceprogres is
essatial for errorrecovery andhelpful for errar propagation

In our initial implemenation, we have mockeledthis central en
tity as a status monitor which is implementeds aweb service(re-
fer Figure 2). On each nodk, a local monitoring agent runs that
capturesthelocal stateof the compositeservicepartition. A com-
posite serviceconsistsof a list of activities and the status of the
senice is generallyreportedin termsof the statusof those activ-
ities. This statecan be retrieved eitherfrom the servicedatabase
(eitherthrough polling atregular intervals or by seting triggers on
the databae) or through someAPI callsto the engne. Thelocal
monitoring agentsperiodcally update the centralizedstatusmoni-
tor thatkeepstradk of the overall progres of the compasite senice
instarce using a procesgemplatethatdescribeghe compsiteser
vice spedfication. The statusmonitor maintainsthestatus of all the
actiities that were part of the original compasite senice, aswell
astheinputs and undo actiitiesfor all such actvities. Thisformsa
compersaton list for the decentraiized compasite service For one
paticular invocationof the compositesavice, the composite ser
vice partition instancesthat getcreated ondifferentnodessharethe
sameuniquecorrelaton id. Thestatusmonitor usesthis correlation
id to correlatethedifferentpartiion instancs on differert nodes to
one global compasite serviceinstarce.

When an erroroccus, the global stak of the compsitesenice
mairtained at the statusmonitor is usedto determineall the activ-
ities that are still running and the actvities that have already fin-
ishedexecution If thereare activitiesin the conpositeservicethat
arestill unde progress andwaiting for input from the failed ac-
tivity, then the statusmonitor sends out an invalidation signalto
all of themsothatthey stopexecuting andthey undothe changes
that they have already made. For all the activities that have al-
read/ conpletedtheir exeaution, the statusmonitor should invoke
the undo actvities for all of them (usingthe compersaton list) in
their reverseorder of execution



We are in the processof conducting experimentsto evaluate
theoverhead imposedby theerrorhanding and status-moritoring
framavork andto determire the optimal frequency of statusup-
dates. Under high loads, maintenane of globd stateat oneplace
can becane a bottleneck ard we are investigatingothe mocdels
of error recovery (forward error propagaton, decertralized status
monitoring) to alleviatethis.
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Figure 3: Experimental Set up for Centralized Orchestration

Expeaiments were corductedto study the performarce of cen-
tralized and decentralized orchestrationausing the FindRoute ex-
anple discussd in section2. Dummy implementatios wereused
for senices A1, A2 andRMshawn in Figure 1, andthe processing
(senice time) wassimulatedby a sleep. We usedthe BPWS4J en-
gineto orchestite spedfications writtenin BPE.4WS. A tool [16]
wasusedto automaticallypartiion the BPE.4WS code. Thefol-
lowing differentcorfigurationswerestudied:

e TheCentralizedrchestratiorasshowvn in Figure 3.

e Decantralized orchestration with HTTP as the commurica-
tion protocd betweenBPWSA4J engnes.We used“pseudd-
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Figure4: Experimental Set up for Decentralized Orchestration

oneway messags, asdisaussedn section 3.1, for engire-to-
engne comnunication Two threal pods were usal within
astandad HTTP senerto resolve thedeallock problem.

e Decertralized orchesgrationwith JIMS asthe comnunication
protocol betweenBPWS4Jengnes. In this casealso two
threadpools were usel within the JIMS containerto resolhe
thedeallock problem.

e Decertralized orchesgrationwith JIMS asthe comnunication
protocol between BPWS4J engnes and with partition DO
splitinto two companerts asexplainedin Section 3.2.

The experimental setup consistedof four standird Intel-based
madinesrunning Linux and connectedby a 100 Mb/s LAN. We
used two multi-threadedasynchronaus clients from two differert
madinesto loadthe system. In centralizedrchesration, the BPW-
S4Jergine washoded insidea standad HTTP sener andeachof
the web seniceswasdegdoyedon a differert mactine onaHTTP
sener. In the de@ntralized-HTP and decertralizedJMS orches-
tration, eachof the BPWS4Jengines (labeledDO to D3 in Figure4)
was hostedon a different machineinside a HTTP or JMS sener.
ThewebservicesAl, A2 and RMwereco-locatedwith D1, D2 and
D3 respetively, but ranon differert HTTP serversasshavn in Fig-
ure4. In thedecetralized IMSsetup with sgit, the two partitions -
D01 and D02 (refersection3.2), werehostedby thesameseverto
sharecortext information In all the four corfigurations described
above, theinvocation of theactwal web servicesvas alwaysSQAP
overHTTR.

The systemwasloadedin threedifferentways - (i) by increasing
thereguestrate, (i) by increasng the sizeof the messgesand (iii)
by increasingthe servicetime. We usedthe following paraneters
to loadthe system:

e Two multithreadedssyndrorousclientsusingatotal of 10to
200 threadsgenerdedrequestsatarateof 60requests/minte
to 1200 requestsiinute.

e ServicetimeatAl, A2 andRMweb senices wasvariedfrom
500 msto 8000ms

e Sizeof themessagswasvariedfrom 512 bytesto 24 Kbytes.

We measiredthe average respasetime atthe sener (C0 in figure3
ard at DO in figure 4) to sene the requestand alsothe throughpu
(numberof requestsprocessd perminute).



Variation of Performancewith Request Rate. Thereqest
ratevariation experimerts were conductedat a fixed messag size
of 512 bytesard servicetime of 4000 ms. Figure 6 shavs thevari-
ation of throughput with request rate for the four orchestratons.
At low requestratesthe throughput is the samefor all the orches-
trationssince total numberof concurrentrequestsexecutingin the
systemarestill lower thanthe sizeof thethreadpool. With increase
in requestrate, the centralized orchestraton is the first to saturate
and startsshowing a drop in throughput as most of the thread
are blocked waiting for a reporse from the compmert web se-
vices.ThedecetralizedHTTP ard decentraized-JMSarethe next
to reachsaturation While the decettralized-JMS version degraces
gracefully the decertralizedHTTP version shaws a rapid decline
and eventually bemmesworsethan the centralizedversion This
is due to the inherent prodems with pseulo asyrchrorous mes-
sagying over HTTP as discussedn Sedion 3.1. In decentraliized-
HTTP orchestration we seea cumulative effect of using pseudo
ag/nchronaus messamng over HTTP at multiple places, particu-
larly when the systemis under high CPU load as the processing
thread does't get schediled for a long time. The throughput for
decertralizedJMSdeclinesastheloadincreasesnd eventudly be-
comessimilar to centralized orchestratiores the threal pool at DO
(referFigure4) evertually becomesthe bottlene& and mostof the
threadsare just blocked waiting for a callbackfrom D3. The IMS-
spit orchesration scalesthe bestas thereare no thread blocked
and all threadsaredoing usefulwork as disaussedn Section3.2.

26000 T T
Centralized —-+-
Decentralized-HTTP e
___ Deeentralized-JMS~ ===~

24000 - JIMS-Split —%— |

Message size = 512 bytes
Service time = 4000 ms /
22000 / q

20000 - / B
18000 |- / q
16000 - E

14000

Average response time in milliseconds

12000

10000

¥

8000 ’ n 1 1
0 400 600 800 1000
Request Rate (Requests sent per minute)

1200

Figure5: Performance Comparison: Response Time Variation
with Request Rate

1400 T T

Degéntralized-HTTP -
ecentralized-JMS ---&---
IMS-Spiit —%— |

1200 Message size = 512 bytes

Service time = 4000 ms

1000 [

Average Throughput (Requests served per minute)

0 L L L L L
0 200 400 600 800 1000

Request Rate (Requests sent per minute)

1200

Figure 6: Performance Comparison: Throughput Variation
with Request Rate

140

Figure 5 shaws the variationof regporsetime with requestrate
for the four orchestratons. Although, at low load, throughput of
the decentralized-JNd ard centralizedorchestratons is the same,
therespamsetime of the centralizedorchestrationis slightly better
thandecenralizedJMS orchestraton. Thus, overheadsof decen
tralization makeit performworsethancentralizedorchestration at
low loads. The respnsetime of the IMS-splitversionis compara-
ble with that of the deentralzed-JMS version at lower loads, but
deteriorates relatively at higher rates. With sgitting the through
put increasesasthereareno blocking cdlbacksandno thread are
blocked. At very high requestrates the decentralizedrchegration
usng JMS-splitallows a very large numberof concurentrequests
executingin the system,eachof which are doing usefulwork and
naot just blocked waiting for a respmse (asin the caseof decen
tralized JMSorchestration) This resuts in higher CPU loadonthe
system and consegiently, highe respnsetimes. Thus, atvery high
requestratesthereis a trade-df betweerthroughpu and respnse
time in the two orchestratios.
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Variation of Performance with Message Sze. The mes-
sage size variaion expeiments were conducted at a fixed request
rate of 600 requests/minand servicetime of 4000 ms. Figure 7
and Figure 8 show the effect of messge size on respmsetime
ard throughput. The graphs clealy shawv tha bothrespmsetime
ard throughput degradein the centralized orchestrationwhen the



messagesize increasesThereis alsoa cleardifferene in perfar-
mancebeween thedecertralized HTTP ard the decetralized-JMS
orchestrationslueto reasmsmertionedin Section3.1. Thereis no
obsenabledifferencen the performane of thedecenralized-JMS
ard the IMS-splitorchestrationsThis indicatesthatthe total num-
ber of concurrer requeds executingin thesystem is lower thanthe
sizeof the threadpool andherce numberof blocked threadshave
no impacton systemperformancein termsof resporse time and
throughput.
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Variation of Performance with Service Time. Theexpe-

imerts on variationof servicetime were conductedat a fixed rate
of 600 requests/minand a messge size of 512 bytes. Figure 9

and Figure 10 show the effect of servicetime on respnsetime

ard throughput. Here again, the experimentsshow that central-
izedorchestraion doesnat scalewith increasing senicetime The

decertralizedHTTP orchestratiorhasrespns timethatis compa-

rade with that of decentralizedJMS but thethroughput is compa-

atively very poor. At theseloads alsothereis no differercein the

performarteof thedeceantralized-JMSand the IMS-s(it orchestra-
tions. Thisagainreflectsthe factthatthe total numbe of concurent
requestsexecutingin the system is lower thanthe sizeof the thread
pool in theseexperiments.

141

Other Experiments. We conductedour experimentson a num-
ber of sampe compaosite web senicesin addition to the FindRoute
senice mentiored in this paper The resultshave not been men
tioned in this paperfor thesakeof brevity. We observedha decen
tralization providesperformancebendits evenin casesvherethere
was no inherent concurency. The performance gain was mainly
dueto rediction of network traffic anddistribution of computation
acrassdifferentnodes.

We alsocaried out preliminary experimerts compaing decen
tralized orchestraton with centralzed orchestraton usinghorizon
tally scaledloadbalancel severs. Thetotal numberof resoucesin
both the casesverekeptthe same We obsenedthat although hor
izontal scaling and load balandng heps centralizedorchegration
perform better than decertralized orchestraton at low loads, de-
certralized orchestraton scalesetter at higherloads. This canbe
againattributedto optimal utilization of threalsin a decerralized
orchestratbn systemasthey arenot blockedwaiting for respnses
and allow large numbe of concurert requeststo be executed.

5. RELATED WORK

As webservices becomeubiquitous,alot of effort is beingspert
in studying differentwaysof compasingthemto create more use-
ful and complex serviceqd6]. Four mocels of sevice compasition
have been proposed[14, 24] basedon centralizedand distributed
flow of dataand control messagsbetweenthe savices. The only
two moddsthatarerelevant for compositionof third party webser
vices arethe centralized cortrol flow centralizeddataflow model
(certralized orchestation) anddistributed cortrol flow distributed
dataflow model (decertralizedorchestration).

Theideaof usingdecentralizeadontrol of workflows anddecen
tralized orchestraton of web seviceshasbeenproposel in earlier
reseach. Benatallahet al. [6] descrile a peerto peerexecution
patern for orchestratig web senicesto overcomethe bottleneck
asseiatedwith having a centralizedcortroller. Therespamsibility
of coordnatingthe exeaution of a compasite serviceis distributed
acrassthe providers which hostthe compnentsof the compasite
senice. However, [6] doesnot describein detail the performance
benefits, potential problemsandvariousbuild time andruntime is-
suwesinvolvedin this proces.

Partitioning of theworkflow spedficationusingstateand activity
charts to enabledistributedexecuion acordingto original seman
ticshasbee studedin[15]. A synchronizationschenethatguaran
teescorred synchranizationbetween workflow engines executing
the partitions of a workflow is alsodeveloped. They alsoconsidcer
theissueof fault toleranceby providing exadly oncesemantics for
ddivering syrchranizationmessagesTheir approachis very sim-
ilar to oursanda lot of interestinglessois can be learrt from their
effort. However, they do not corsiderworkflow-base compasition
of webservicegwhichis ourmainfocus)and theproblemsthat are
peculiarto this kind of compgsition.

Arjuna[19], aWFMS for CORBA-basedervironments,decen
tralizesboth theworkflow coardinationandactivity execution. This
executionmodd decertralizesthe coordinationof a processhy in-
stalling “taskcantroller” objectsin different domainsthat execue
ard mana@ tasksandcoordinae with eachothe to deliver work-
flow routingfunctiondity.

The RainManexecuion modéd [18] semrateshe respasibility
of workflow coardination from adivity execuion by creating two
classs of ertities, Sourcesand Performers. In effect, while the
coordingion of each procesgemainslocaized within a Souceob-
ject, theactualexecution of actiitiesis decentralizedcros anet-
work of Performersover which Souceshave very limited control.
This model is essentiallythe certralized orchestrationof web ser



viceswith websenicesactingas the Performersandthe workflow
ading asthe Source.

A distributed workflow control architedure has beenproposed
in [12], wherethe agerts schedile and coardinate the workflow
instarces. To executea workflow instarce, the agerts that are re-
sponshble for exeauting the steps of that workflow instance have
to commuricatewith each othe transferring the entire stateof the
workflow from one agentto the other The paper also descibes
how eventsshoud be propagatedbetweenthe agentsasefficiently
as possble while still satisfyingthe failure handling and coordi-
natedexecttion requrements.

A lot of work has also been dore in understading and sdv-
ing variousruntimeissuesn parallelanddistributedsystens. De-
centralized orchestratiorrelies heavily on asyrchronous messg-
ing. The benefits of asyndronaus messaing, better throughput
and graceful shutdwn, have beenstudedin [11]. Theimportane
of the designcomponents, queues and threadpools for building
highly concurren systems, have beendisaussedin [23] and the
benefitsand trade-df in concurrerty have beenexploredin [22].

In our ealier work [17] we have studied the issues of concur-
rercy andsynchrorizationin decertralization. Therewe descibe
an algorithm to identify different forms of concurerncy in a com-
posite savice specificatbn and considersthe impact of dynamic
binding and fauts on syndronization corstructs. In [16] we give
analgorithm for partitoning the BPEL4WS progams.

6. CONCLUSIONSAND FUTURE WORK

In this paperwe have idertified variousbuild time and runtime
isstesin decentralizedrchestratiorof compsiteweb servicesand
alsodiscussd solutions to addessthem. We coveredissuesang-
ing from code partitioning for decerralization to detaileddisaus-
sion of thesaversthatparticipaten decertralizedexecttion - their
thread pod desigh and conmunicationprotocds. We shaved that
the threadpod designcanbe a saurceof potertial deadloclks and
that JMS is a more efficient commurication protocd than HTTP
for engine-to-elyine communicdion in a de@ntralizedsetup We
alsodiscusseduild and runtimeissuesn errorhardling ard error
recovery We presated an experimena evaluagion of the perfar-
manceof decerralizationorchestratioras comparedto certralized
orchestrationin termsof throughput, averagerespmsetime and
saalability. Our resultsrecanfirmedthe performane benefits that
decertralization provides We also experimertally evaluatedtwo
different deentralizaton schemes and shoved that at very high
loads there is a trade-of betweenthroughput and respnse time
with thetwo schenes.

With properdesign, optimal partiioning and runtime sugportfor
errar hardling andrecovery, decertralized orchestrationprovides
an attractve approad for executionof complex high performane
compasite senices.

Our currert toal for code partitioning auomatically gererates
partitions with the sglitting optimization. We areworking on en-
hancirg the tool to automaically partition fault handlersand in-
sat new fadt hardlers. We are also investigatingvarious archi-
tectues for error handlingand error recovery in a deceiralized
saup ard quartify their effect on perfformance In addition, we are
working on infragructure for dynanic reconfiguration (based on
runtime mornitoring) of compgsite servicesto obtainoptimal per-
formance. We plan to study the effect of dedoyment topologes
on performanceandwork on various synchronizationprotols for
decertralizationin future.
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APPENDIX
A. SUMMARY OF BPEL4WS CONSTRUCTS AND NO-
TATION

Figure 11 givesthe subsé of BPEL4AWS constructsusedin this
paper along with a desciption of eachcongruct and the corre-
spondng notatiors we have used.
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