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ABSTRACT
Web services makeinformation and software available program-
matically via the Internetand may be used asbuilding blocks for
applications. A compositeweb service is one that is built using
multiple componentweb servicesandis typically specifiedusing a
languagesuch asBPEL4WS or WSIPL. Onceits specification has
beendeveloped,thecomposite service maybeorchestrated either
in a centralized or in a decentralized fashion. Decentralized or-
chestration offersperformanceimprovementsin termsof increased
throughput andscalability and lower responsetime. However, de-
centralized orchestrationalsobrings additional complexity to the
systemin termsof errorrecoveryandfault handling. Further, incor-
rect design of adecentralizedsystemcanleadto potential deadlock
or non-optimalusage of system resources.This paper investigates
build time and runtime issuesrelatedto decentralizedorchestra-
tion of composite web services. We support our design decisions
with performance resultsobtainedon a decentralizedsetupusing
BPEL4WSto describethecompositewebservicesandBPWS4Jas
theunderlying runtimeenvironment to orchestratethem.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online Information
Services—Web-based services; D.1.3 [Programming Techniques]:
Concurrent Programming—Distributed Programming, Parallel Pro-
gramming

General Terms
Design, Performance,Experimentation

Keywords
CompositeWeb Services,Decentralized Orchestration, Code Par-
titioning, BPEL4WS

1. INTRODUCTION
Webservices encapsulateinformation, softwareor other resour-

ces, and makethemavailable over thenetwork via standardinter-
facesand protocols [10]. Complex web services may be created
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by aggregatingthefunctionality providedby simplerones.This is
referredto as service composition and theaggregatedwebservice
becomesa composite web service.

Composite webservicesmaybedevelopedusinga specification
language such asBPEL4WS [2, 13], WSIPL [8], WSCI [5], etc
and executedby anengine such asBPWS4J[1]. Typically, a com-
posite web servicespecification is executedby a single coordina-
tor node. It receives the client requests,makes the required data
transformationsandinvokesthecomponent web servicesasper the
specification. We referto this mode of executionascentralized or-
chestration. The coordinatornode is responsiblefor coordination
of all dataand control flow betweenthe components, andhence
becomesaperformancebottleneck. Al l data is transferredbetween
the various componentsvia the coordinatornode insteadof being
transferreddirectlyfrom thepoint of generation to thepoint of con-
sumption. This leadsto unnecessarytraffic on the network. In ad-
dition, it is possiblethatawebservicegeneratesa lot of data that is
irrelevant to the compositeservice,yet this data will betransferred
to the coordinator nodewhereit is discarded, therebyputting un-
necessaryloadon thenetwork. Thesefactorsleadto poor scalabil-
ity andperformancedegradation athigh loads.

Specifyingacompositeserviceusingalanguagelike BPEL4WS
has interestingramifications. Thespecificationcanbeanalyzedus-
ing techniquessuch asprogramanalysis [16], petri-nets [21],etc.
Thedataandcontrol dependencesbetweenthe components canbe
analyzedandthecode canbepartitionedinto smaller components
thatexecuteatdistributed locations.Wereferto thismodeof execu-
tion asdecentralized orchestration. In decentralized orchestration,
thereare multiple engines,eachexecuting a composite web ser-
vice specification (a portionof the original compositewebservice
specification but complete in itself) at distributed locations. The
enginescommunicatedirectly with each other(ratherthanthrough
a central coordinator) to transferdataandcontrol whennecessary
in an asynchronous manner. It may appear that the introduction
of additional enginesin theexecution pathwould adverselyaffect
performance, however decentralizedexecution bringsperformance
benefits for thefollowing reasons:

� Thereis no centralizedcoordinatorwhich canbea potential
bottleneck.

� Distributing the data reducesnetwork traffic and improves
transfertime.
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� Distributing thecontrol improvesconcurrency.

� Asynchronousmessaging betweenenginesbringsbenefitsof
better throughput andgraceful degradation [11].

Furthermore,decentralizedorchestrationmight bethe only way to
composewebservicesin constraineddata flow environments(e.g.
business-to-business scenarios) wheredatamight flow only in a
given direction due to business constraints. This inevitability of
decentralizedorchestrationin constraineddata flow environments
and thepotential performancebenefits to begainedthroughdecen-
tralizedorchestration motivated usto explore it further.

While decentralization brings performance benefits, it also in-
creasesthe complexity of the systemandposesmany build time
and runtime challenges.It requiresmodificationsto the infrastruc-
tureto executetheservice,build timeandruntimesupport for error
handling andrecovery, and techniques/tools for codepartitioning.
Thesecomplex build time and runtimeissueshave to be properly
addressed in order to exploit the full performancebenefits of de-
centralization.

In this paperwe identify various runtime and build time issues
in decentralizedorchestration of compositeweb servicesanddis-
cusssolutions to addressthem. The build time issuesdiscussedin
Section2 include:

� determining how to efficiently partition thecentralizedspec-
ification

� distributingerrorhandling codeacrosspartitionsso asto cor-
rectly andefficiently handle runtimeerrors

Theruntimeissuesdiscussed in Section3 include:

� using anefficient protocol for engineto engine communica-
tion

� internal design detailsof the engineto avoid potential dead-
locks

� infrastructure for errorhandlingand recovery

We experimentally evaluate the performanceof decentralizedor-
chestration and the effect of variousruntimeandbuild time issues
onperformance. TheexperimentswereconductedusingBPEL4WS
to describethecomposite webservice andBPWS4Jto orchestrate
it. Theseresults arepresentedin Section 4. The relatedwork is
summarizedin Section 5 followedby conclusions and futurework
in Section6.

2. BUILD TIME ISSUES
Thissectionexplainsdecentralizedorchestrationby takingasam-

ple compositewebservicespecification anddecentralizing it. We
alsodescribe thevariousbuild time issuesthatcomeupduringthis
process.For the purposeof illustration, we usea compositeweb
service – the FindRoute service, whosetaskis to find the driving
directions from theaddressof onepersonto that of other. It takes
asinput the namesof the two people, getsandcollatestheneces-
sary information from threecomponent web servicesand returns
thedriving directions from thefirst addressto thesecondaddress.

Centralized Orchestration. In centralizedorchestration, the
FindRoute compositeservicereceivestwonamesname1 andname2
from a client, then sends name1 to a web serviceAddrBook(1)
which returnsthe address,addr1, of name1. Concurrently, Find-
Route sendsname2 to awebserviceAddrBook(2) whichreturnsthe

address,addr2, of name2. From thetwo addressesreturned, Find-
Route extractsjust the city and zip of the two addressesand sends
this to a webserviceRoadMap which computesdriving directions
from one location to the other. Thesedirections are returned to
the client. The serviceis graphically representedin Figure 1(a)
and thecorresponding(pseudo)BPEL4WS specification(referap-
pendix A) is shown in Figure1(c).

Decentralized Orchestration. In decentralizedorchestration
of FindRoute service, the BPEL4WS code is partitionedinto four
partitions- D0, D1, D2 andD3, whichareexecuted by four BPWS-
4J enginesat the four locations. Figure 1(b) graphically depicts
thedecentralizedorchestration of FindRoute Service andthecorre-
sponding pseudo-BPEL4WS specificationis shown in Figure1(d).
The D0 partition receives two namesname1 and name2 from a
client, thensendsname1 to partition D1 and name2 to partition D2
asynchronously in paralleland thenwaits on a callback receive
for theresultsfrom D3. TheD1 partition invokesweb serviceAd-
drBook(1) synchronouslypassing in name1 astheinput andreceiv-
ing address,addr1, of name1 in return.Similarly, theD2 partition
invokeswebserviceAddrBook(2) with name2 astheinput andre-
ceivesaddress,addr2, of name2 astheresponse.Only therelevant
city andzip information is extractedfrom theaddressandsentfrom
D1 to D3 and similarly from D2 to D3, thus reducing the data on
thenetwork. TheD3 partition waits till it receivestheinputs from
bothD1 andD2 and theninvokestheRoadMap webservicethatre-
turnsthe driving directionsfrom oneaddressto theother. TheD3
partition returnsthedriving directionsbacktoD0 partition through
a callback. D0, on gettingthe callback, receivesthedriving direc-
tionsand sends thembackto theclient.

2.1 Code Partitioning
In decentralized orchestration,the various interactionsbetween

thecomponentsareanalyzedandthecompositewebservicespeci-
ficationis partitionedusing programanalysis techniques. We have
built a tool that does this task automatically. The partitions are
full-fl edgedcompositewebservice specificationsthemselves,that
executeatdistributedlocations(preferablycollocatedwith theweb
services) and can be invoked remotely. Our tool also generates
theWeb Service Description Language (WSDL) [9] descriptors for
each of thesefragments.The WSDL descriptorspermitthemto be
deployedandinvokedlike any standardwebservice.

The code partitioning algorithm identifies the number of final
partitions basedon the number of componentweb servicesin the
composite web service. Thenthecentralizedcodespecification is
partitioned acrossthe components in sucha manner that the data
being passedbetweencomponentsisminimizedand theparallelism
amongst the componentsis maximized. Thebuild time processof
decentralizationessentially consistsof three steps - (1) automatic
parallelization and code partitioning, (2) synchronization analysis
and (3) code generation. Although BPEL4WS permitsspecifica-
tion of explicit parallelism, we still apply data flow analysis [16]
techniquesto determinethemaximumparallelismandthenapply a
cost function to determine themostefficientcodepartition - which
may or may not make useof all possibleparallelism. After the
code has been partitioned the interactions between the partitions
are analyzed to determine the best synchronization protocols to
use between the partitions [17]. Oncethis analysis is complete,
theBPEL4WS codefor thepartitions is generated- an example is
shown in Figure1 (d). The issuesof code partitioning are men-
tioned here for sakeof completenessbut we do not addressit in
this paper. Thesearediscussedin an earlier paper[16].
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n1.name = c.name1
n2.name = c.name2
flow
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end−flow

invoke(A2, n2{name}, a2{ph,street,city,zip})
end−sequence

receive(client, c{name1,name2})
flow

sequence
n1.name = c.name1
invoke(A1, n1{name}, a1{ph,street,city,zip})

end−sequence
sequence

n2.name = c.name2

C0

r.city1 = a1.city; r.city2 = a2.city
r.zip1 = a1.zip; r.zip2 = a2.zip

reply(client, dir)
invoke(RM, r{city1,city2,zip1,zip2}, dir{routes})

receive(D0, n1{name})
invoke(A1, n1{name}, a1{ph,street,city,zip})
r1.city = a1.city

invoke(D3, r1{city, zip})
r1.zip = a1.zip

D1

flow
receive(D1, r1{city, zip})
receive(D2, r2{city, zip})

end−flow
r.city1 = r1.city; r.zip1 = r1.zip
r.city2 = r2.city; r.zip2 = r2.zip

invoke(D0, dir)

D3

receive(D0, n2{name})
invoke(A2, n2{name}, a2{ph,street,city,zip})

r2.zip = a2.zip
r2.city = a2.city

D2

invoke(RM, r{city1,city2,zip1,zip2}, dir{routes})

(c)

(d)

RoadMap

invoke(D3, r2{city, zip})

Figure 1: Centralized and Decentralized Orchestration

2.2 Handling Errors at Build Time
Theuseof asynchronousmessagingbetween the different com-

positeweb servicepartitions makeserror propagationin a decen-
tralizedsetupmore complex. BPEL4WS provides a mechanismto
explicitly catcherrorsand handle themby executing subroutines
specified in fault handler elements. In decentralizedorchestration,
one of the challenges is to partition the existing fault handlersin
thecompositewebservicespecification correctlyso that they retain
their semanticsevenafter partitioning. If thefault handler includes
sendinga messageto someothercomponent in the composite web
service (which now executes on a different nodedueto decentral-
ization), changeshaveto bemadeaccordingly.

For example,therecanbeafault handler in thecentralizedFind-
Routespecification in Figure1(c) which catchesall errorsarising
out of theaddressbook webserviceinvocation failuresand returns
anerror responsebackto theclient without invoking theroad route
service. It might look something like this:
sequence

n1.name=c.name1
invoke(A1,n1(name),a1{ph,street,city,zip})
throw (‘‘addrBookFailure’’)

end-sequence
...
...
faultHandlers

catch (‘‘addrBookFailure’’)
errorMsg.msg = ‘‘Address Book service not available’’
reply(client, errorMsg)

end-faultHandlers

Whilepartitioningthecentralizedspecificationthis fault handler
shouldbemovedto thepartitionscontroll ing the addressbookser-
vices(partitionsD1 andD2). Furthermore,thefaulthandlershould
now send an error message to the partition D3 sinceit might be
waiting for an input from one of the addressbook services(pro-
vided that the other addressbook service executedsuccessfully).
The error message here could be in the form of an invalid input
(e.g. valueof -1 for the zip code). In this casethe fault handler
might look something like this:

faultHandlers

catch (‘‘addrBookFailure’’)
r1.zip = -1
invoke(D3, r1{city, zip})

end-faultHandlers

Partition D3 cancheck for the erroneous input andsendback an
errorto thefirst node.

flow
receive(D1,r1{city,zip})
receive(D2,r2{city, zip})

end-flow
if (r1.zip >0 && r2.zip >0)

r.city1=r1.city; r.zip1=r1.zip
r.city2=r2.city; r.zip2=r2.zip
invoke(RR,r{city1,city2,zip1,zip2},dir{route})

end-if
else

dir.route = ‘‘Address Book service not available’’
end-else
invoke(D0,dir)

Another challenge is to insert additional fault handlers so that
errorspropagatecorrectly in the decentralizedsetup. This is not
anissuein centralizedsetupas thecontrol remains centralizedand
all errorsare propagatedbackto the client gracefully. In caseof
decentralization,errorsarelocalizedat their respectivenodeof oc-
currencedue to the useof asynchronous messaging. This canbe
alleviatedby insertingadditional faulthandlersin eachof thecom-
posite servicefragments. Thesefault handlerscanthen either in-
voke a centralizedentity or an activity waiting for an input from
the failedactivity informing it about theerror. Theerrormessage
canthen besentbackto the client. For example,the fault handler
describedabove,shouldbeinsertedin thepartitionsD1 andD2 and
thecorrespondingcheckshouldbemadein partition D3, evenwhen
theoriginal centralizedwebservicespecificationdoesn’t have any
fault handler.
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3. RUNTIME ISSUES
Decentralized orchestration involves partitioning a centralized

composite servicespecification into smallerpartitions thatarefull-
fledged web services. Each partition requiresa runtime environ-
ment (a workflow engine) for execution. Thus decentralized or-
chestration introducesmultiple enginescommunicating with each
other. This communication appearsas a webservice invocationin
each partition (typically as thelaststepof the flow). Differentpa-
rameters affect the efficiency of this communication- theprotocol
used,the threading modelsused in the engine, etc. Furthermore,
a runtime infrastructure is also neededfor error propagationand
error recovery in decentralizedorchestrationwhich is complicated
duetheuseof asynchronousmessaging. Wediscusstheseissuesin
detail in thefollowing subsections.

3.1 Application Server and Messaging
Compositewebservicesareexecutedbyan enginesuch asBPW-

S4J.Theengine itself is hostedasa webservice insidea web ser-
vice container. The implementationof a web servicecontainer
depends on the type of protocol it usesto communicate with its
clients. SOAP-over-HTTP andSOAP-over-JMS are the common
messagingprotocols usedfor invoking web services. Therefore,
we will restrictour discussion to thesetwo protocols.

3.1.1 HTTP based Application Server
HTTP is a synchronousprotocol,whereasdecentralizedorches-

trationrequiresasynchronousmessaging. “Pseudo” one-way mes-
saging canbe achieved over HTTP by sendinga dummy response
to the client. When a web service is invoked using HTTP asthe
messagingprotocol, its hostingweb servicecontainer is typically
implementedas a servlet, hostedinside a servlet container. As
servlets were designed for synchronous request-responseinvoca-
tions,a limitation of theservlet containeris that a responsecannot
be sent back to the client unlessthe servlet threadcompletesthe
processing of themessage. Thus,a servletcannot accept a request
in a thread, thenclosethe connectionandcontinue to processthe
requestasynchronously in the samethread. As a result, a client
is blockedas long asthe request is being processed at the server.
TheBPWS4Jenginesolvesthis problemby maintainingan inter-
nal threadpool (which is independent of the servletthreadpool).
Whentheengine receivesanasynchronous request,it puts the re-
questinto an internalqueue,creates a dummy responseandsends
it back via theservlet thread.The servlet threadis thenfree to re-
ceive a new request and theclient is alsonot blocked.Meanwhile,
the asynchronousrequestis processedin oneof the threads from
the internal threadpool. Both the threadpools are of comparable
size.

3.1.2 JMS based Application Server
Whenawebserviceis invokedusing JMSasthemessaging pro-

tocol, the hostingweb servicecontainer is typically implemented
asa Message DrivenBean(MDB) [3]. This MDB is hostedinside
anEnterpriseJava Bean(EJB)container. The EJBcontainerhasa
single thread(listener thread) listeningon a specified topic/queue.
It alsohasa threadpool to processtheincomingrequests(process-
ing threadpool). On receiving a request,the listener threadputsit
on an internal queueandcontinueslisteningfor moreincomingre-
quests.Oneof thethreadsfrom theprocessingthreadpool picksup
this request andprocessesit. If therequestis synchronous,thepro-
cessingthread,after completing its processing, extractsthe client
addressfrom thecontext andsendsthereply. If therequestis asyn-
chronous,nothing is sent backto theclient.

3.1.3 Performance Comparison
At a first glance,there is not muchdifferencebetweenanasyn-

chronous messagehandled by an EJB container or a servlet con-
tainer. In both the casesa listener threadreceivesa request,puts
the requestinto a queue and continuesto listen for morerequests
while the request is processedin a threadin the background. In
fact, at low loadstheperformanceof a decentralizedorchestration
over HTTP is similar to a decentralizedorchestrationover JMS.
However, athigh loads,experimental analysis(details in Section 4)
shows that decentralized execution over HTTP farespoorly com-
paredto aJMSsolution. Thereason is asfollows: Whenanengine
D1 sends an asynchronousHTTP messageto another engineD3,
D3 parsesthe request, determines that it is asynchronous, puts it
into a queueand immediately returnsa dummy responseto D1. At
low loads this processtakeslessthan 30 millisecondson anaver-
age. At high loads, when the systemis loaded andmany threads
areexecuting concurrently, it hasbeenobserved that the threadat
D3 gets descheduled before it can send the responseand so the
turnaroundtime can beashigh as2000 to 3000milliseconds.The
consequence of this is two-fold. Both theprocessingthread at the
sending engineandthe receiver thread at the receiving engine are
blocked for longer periodsof time. This reducestheir capacity to
processotherrequestsand hencethethroughput reducesandthere-
sponsetime increases.Asynchronous webserviceinvocationover
JMSdoesnotsuffer from this limitationas it doesnot have to send
back a dummy message.

3.2 A Potential Deadlock
As a result of decentralizedorchestration, a potentialdeadlock

situationmight ariseunderthefollowing conditions:� The engine maintains a processingthreadpool i.e. it does
not spawn anew threadwhenever there is anew request, and

� Compositeweb serviceinstanceshave threadaffinity.

Consider a BPEL4WSprogramthat hasa correlatedreceive (a
receive waiting for an event with correlationinformation that is
usedfor locating anexisting compositeserviceinstance) asinD0 in
Figure1(d). Thefirstreceive instantiatesa BPWS4Jcomposite
service instancein a thread.This instance cannot exit until it gets
a message that satisfiesthe second receive andhenceblocks a
threaduntil thesecondmessageis received. Whenthesecondmes-
sagearrives,it is pickedupby anotherthreadfrom the same thread
pool. On parsing the message, the second thread determinesthat
the message needs to be “patched” into an existing thread, wakes
up the correlatedthreadand returns.Now let the threadpool size
beN. If thereareN concurrent requests,thenall the N threadswill
be blocked waiting on the second receive. When a correlated
messagecomesin, it will beput into thequeue. However, sinceall
the threads areblocked, it wil l never be removed from the queue
and the systemwil l go into a deadlock.

A simple solutionis to spawn a new processingthread for each
incomingrequest.In thisscenario, theprocessingthread pool is not
maintainedandthesystemspawns a thread as and whenrequired.
This approachhasmajor drawbacks. The time requiredto create
and destroy the thread is more thanthetimerequiredfor allocating
a threadfrom a threadpool. Further, in this situation,thecontainer
(servletor EJB asthe casemay be) is not able to control the load
on thesystem, andthenumber of threads in the systemwill grow
arbitrarily astheloadincreases. Thisadverselyaffectsperformance
asthesystemhaslimited CPU/memoryresourcesand performance
deteriorateswhenthenumberof threadsbecomevery large[23].

A second solution to the deadlock problem is to remove thread
affinity. Whenever a composite serviceinstanceblocks on a corre-
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latedreceive, theenginesavesits stateand theprocessing thread
is release� d. In this case, the processingthreadsarenot blocked.
This solution hasthe advantagethat even though many compos-
ite service instances may be blockedon receive, no thread is
blocked. This permits the systemto serve another request and
hencethe systemcan make full useof the thread pool which is
a limited resource. A seriousdrawbackof this schemeis the in-
creasedprocessingtime as the compositeserviceinstance state
needsto besaved ateach correlatedreceive andreloaded when-
ever it getsa correlatedmessage. Anotherdisadvantageis the in-
creasedmemory requirement to save thestatesof all blockedcom-
positeserviceinstances.

A third solution to thedeadlock problemis to have separatepro-
cessingthreadpools for the messageprocessingand messagere-
ceiving threads.This way, the incomingrequest will beprocessed
by a separatethread pool andthe correlatedmessagewill be pro-
cessedbyadifferentthreadpool. Assoonasthecorrelatedmessage
receiving threaddeterminesthecompositeserviceinstancewaiting
for themessage,it hands over the message to theblockedprocess-
ing threadand the blockedthreadresumeswork. Since, the cor-
relatedmessagereceiving thread is not doing much processing(it
merely locatesthecompositeservice instancewaiting for thismes-
sage) only a small number of threads are required in this thread
pool. Theoretically, only one threadin this pool is sufficient to
breakthedeadlock. Thedisadvantage with this solutionis that the
processing threadsarestill blocked on the receive. As moreand
more threadsareblocked, thethroughput of thesystemgoesdown.

A fourth solution to the deadlockproblem is to spli t the com-
positeservicepartition such that thecorrelatedreceive andthe
remaining processingis moved to another composite servicepar-
tition. This splitting canbe done automatically during code par-
titioning. Hence,different composite serviceinstancesgetcreated
for incomingrequestsand for callbacks. Here,theinitial composite
service instance receivesa request,doessomeprocessing, makesa
requestand exits. The correlatedmessageis received by another
composite service instance in another thread, which doesthe rest
of the processingand sends the responsebackto the client if re-
quired. For example,D0 of Figure1(d) canbe split into D01 and
D02 asfollows:

D01:

receive(client,c{name1,name2})
n1.name=c.name1
n2.name=c.name2
flow

invoke(D1,n1{name})
invoke(D2,n2{name})

end-flow

D02:

receive(D3,dir)
invoke(client,dir)

Thus, the BPEL4WS composite service partition is split into
two separatepartitions, suchthatneitherhasa callbackreceive
within thepartition. In this case,sincethe processingthread never
blocks, thereis no question of deadlock. Further, the throughput
alsoimprovesasevery thread is either busy doing usefulwork or
waiting for a requestand no threadis blocked, unableto do use-
ful work. This schemeensuresoptimal usage of systemresources.
However, this scheme hasone disadvantage - context information
relatedto the client needsto be propagated from the initial thread
to thefinal split composite serviceinstancealongthecall graph.

The first two solutions discussedhererequire changesto exist-
ing servlet container implementations. The first caserequiresthe
servlet container to create a thread per request insteadof using
a threadpool. The second solution requiresthe containeror the

BPWS4Jengine to be able to swapa running processin a thread
to beswappedout of the threadpool whenit blockson a callback
and be swappedin againwhen it is ready to run. The remaining
two solutions can be used without any modifications to existing
systems. Hence,thesesolutionsarepreferable. We have evaluated
theperformanceof thethird andfourthsolutionsand theresultsare
discussedin Section 4.

3.3 Error Propagation and Error Recovery
In decentralized orchestration, the entire stateof the original

compositewebserviceis distributedacrossdifferent nodesand this
makeserror recovery a complex task. It brings in issuesrelatedto
transaction processing, which hasbeenan active areaof research
and many efforts like WS-Transaction[7], BTP [4], Transactional
Atti tudes[20] areunderway to solve this problemfor centralized
orchestration of compositeweb services. We restrict our discus-
sion to problemsthat are peculiar to decentralizedorchestration
and proposeasimpleapproachto solveerrorhandling and recovery
without concerning ourselveswith transaction processing.

We discussed build time issues in fault handling and forward
propagationof errors in Section 2 . However, in certaincasesit
might beeasierandmorereliable to propagatetheerrorto acentral
entity that hassomeknowledgeabout the state of the entirecom-
posite service. The central entity canthen stopall the composite
service partitions that arecurrently executing. Knowing the state
of the overall composite webservicealsohelpsin recovering from
anerror, asundo operations for all the activities that have already
beencompletedneedto be invoked. Thus, runtimemonitoring of
the individual composite service partitions on different nodes to
calculate an estimate of the overall composite serviceprogress is
essential for errorrecovery andhelpful for error propagation.

In our initial implementation, we have modeledthis central en-
tity asa status monitor which is implementedasa webservice(re-
fer Figure 2). On each node, a local monitoring agent runs that
capturesthelocal stateof the compositeservicepartition. A com-
posite serviceconsistsof a list of activities and the status of the
service is generallyreportedin termsof the statusof thoseactiv-
ities. This statecan be retrieved either from the servicedatabase
(eitherthrough polling at regular intervalsor by setting triggers on
the database)or through someAPI calls to the engine. The local
monitoring agentsperiodically update the centralizedstatusmoni-
tor thatkeepstrack of theoverallprogressof thecompositeservice
instanceusing a processtemplatethatdescribesthe compositeser-
vicespecification.Thestatusmonitor maintainsthestatusof all the
activities that werepart of the original composite service, aswell
astheinputsand undo activitiesfor all suchactivities. This formsa
compensation list for thedecentralized composite service. For one
particular invocationof the compositeservice, the compositeser-
vicepartition instancesthat getcreated ondifferentnodessharethe
sameuniquecorrelation id. Thestatusmonitor usesthiscorrelation
id to correlatethedifferentpartition instancesondifferent nodesto
one global composite serviceinstance.

Whenan erroroccurs, theglobal state of thecompositeservice
maintainedat thestatusmonitor is usedto determineall theactiv-
ities that are still running and the activities that have already fin-
ishedexecution. If thereare activities in thecompositeservicethat
arestill under progressandwaiting for input from the failed ac-
tivity, then the statusmonitor sends out an invalidation signal to
all of themso that they stopexecuting andthey undo thechanges
that they have already made. For all the activities that have al-
ready completedtheir execution, the statusmonitor should invoke
theundo activities for all of them (usingthe compensation list) in
their reverseorderof execution.
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We are in the processof conducting experimentsto evaluate
theoverhead� s imposedby theerrorhandling and status-monitoring
framework and to determine the optimal frequency of statusup-
dates.Under high loads, maintenance of global stateat oneplace
can become a bottleneck and we are investigatingother models
of error recovery (forward error propagation, decentralizedstatus
monitoring) to alleviatethis.
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4. EXPERIMENTAL RESULTS
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Figure 3: Experimental Set up for Centralized Orchestration

Experiments wereconductedto study the performance of cen-
tralizedanddecentralized orchestrationsusing the FindRoute ex-
ample discussed in section2. Dummy implementations wereused
for servicesA1, A2 andRM shown in Figure1, andthe processing
(service time) wassimulatedby a sleep. We usedtheBPWS4J en-
gineto orchestratespecificationswrittenin BPEL4WS.A tool [16]
wasusedto automaticallypartition the BPEL4WS code. The fol-
lowing differentconfigurationswerestudied:

� TheCentralizedorchestrationasshown in Figure 3.

� Decentralized orchestration with HTTP as the communica-
tion protocol betweenBPWS4J engines.We used“pseudo”-
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Figure 4: Experimental Set up for Decentralized Orchestration

onewaymessages,asdiscussedin section 3.1,for engine-to-
engine communication. Two thread pools wereused within
a standard HTTP server to resolve thedeadlockproblem.

� Decentralizedorchestrationwith JMSasthe communication
protocol betweenBPWS4Jengines. In this casealso two
threadpoolswereused within the JMScontainerto resolve
thedeadlockproblem.

� Decentralizedorchestrationwith JMSasthe communication
protocol between BPWS4J engines and with partition D0
split into two components asexplainedin Section 3.2.

The experimental setup consistedof four standard Intel-based
machinesrunning Linux andconnectedby a 100 Mb/s LAN. We
used two multi-threadedasynchronous clients from two different
machinesto loadthesystem. In centralizedorchestration, theBPW-
S4Jenginewashosted insidea standard HTTP server andeachof
thewebserviceswasdeployedon a different machine on aHTTP
server. In the decentralized-HTTP and decentralized-JMS orches-
tration, eachof theBPWS4Jengines(labeledD0 toD3 in Figure4)
washostedon a different machineinside a HTTP or JMS server.
ThewebservicesA1, A2 andRM wereco-locatedwith D1, D2 and
D3 respectively, but ranon different HTTPserversasshown in Fig-
ure4. In thedecentralizedJMSsetup with split, thetwo partitions-
D01 andD02 (refersection3.2), werehostedby thesameserverto
sharecontext information. In all thefour configurationsdescribed
above, theinvocation of theactual webserviceswasalwaysSOAP
overHTTP.

Thesystemwasloadedin threedifferentways- (i) by increasing
therequest rate, (ii) by increasing thesizeof themessagesand(iii)
by increasingtheservicetime. We usedthe following parameters
to loadthesystem:

� Two multithreadedasynchronousclientsusingatotalof 10 to
200 threadsgeneratedrequestsatarateof 60requests/minute
to 1200 requests/minute.

� ServicetimeatA1, A2 andRM web serviceswasvariedfrom
500 msto 8000ms

� Sizeof themessageswasvariedfrom512bytesto 24Kbytes.

Wemeasuredtheaverageresponsetimeattheserver (C0 in figure3
and at D0 in figure4) to serve the requestand also the throughput
(numberof requestsprocessed perminute).
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Variation of Performance with Request Rate. Therequest
ratev� ariation experiments were conductedat a fixedmessage size
of 512 bytesand servicetime of 4000ms.Figure6 shows thevari-
ation of throughput with request rate for the four orchestrations.
At low requestratesthe throughput is thesamefor all the orches-
trationssincetotal numberof concurrentrequestsexecutingin the
systemarestill lower thanthesizeof thethreadpool. With increase
in requestrate,thecentralized orchestration is thefirst to saturate
and startsshowing a drop in throughput as most of the threads
areblockedwaiting for a responsefrom the component web ser-
vices.Thedecentralized-HTTPand decentralized-JMSarethenext
to reachsaturation. While thedecentralized-JMSversion degrades
gracefully, the decentralized-HTTP version shows a rapid decline
and eventually becomesworsethan the centralizedversion. This
is due to the inherent problems with pseudo asynchronous mes-
saging over HTTP as discussedin Section 3.1. In decentralized-
HTTP orchestration, we seea cumulative effect of usingpseudo
asynchronous messaging over HTTP at multiple places, particu-
larly when the systemis under high CPU load as the processing
thread doesn’t get scheduled for a long time. The throughput for
decentralized-JMSdeclinesastheloadincreasesand eventually be-
comessimilar to centralizedorchestrationas thethread pool atD0
(referFigure4) eventually becomesthe bottleneck and mostof the
threadsare just blocked waiting for a callbackfrom D3. The JMS-
spli t orchestration scalesthe bestas thereareno threads blocked
and all threadsaredoing usefulwork asdiscussedin Section3.2.
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Figure 6: Performance Comparison: Throughput Variation
with Request Rate

Figure 5 shows the variationof responsetime with requestrate
for the four orchestrations. Although, at low load, throughput of
the decentralized-JMS and centralizedorchestrations is the same,
theresponsetime of thecentralizedorchestration is slightly better
thandecentralized-JMS orchestration. Thus, overheadsof decen-
tralization makeit performworsethancentralizedorchestrationat
low loads.The responsetime of theJMS-splitversionis compara-
ble with that of the decentralized-JMS version at lower loads, but
deteriorates relatively at higher rates. With spli tting the through-
put increasesasthereareno blocking callbacksandno threads are
blocked. At very high requestrates,thedecentralizedorchestration
using JMS-splitallows a very largenumberof concurrentrequests
executing in thesystem,eachof which aredoing usefulwork and
not just blocked waiting for a response(as in the caseof decen-
tralizedJMSorchestration).This results in higher CPU loadonthe
system andconsequently, higher responsetimes.Thus,atveryhigh
requestratesthereis a trade-off betweenthroughput and response
time in the two orchestrations.
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Variation of Performance with Message Size. Themes-
sage size variation experiments wereconductedat a fixed request
rateof 600 requests/minand servicetime of 4000 ms. Figure 7
and Figure 8 show the effect of message size on response time
and throughput. The graphsclearly show that both responsetime
and throughput degradein the centralized orchestrationwhen the
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messagesize increases.Thereis alsoa cleardifference in perfor-
mance" between thedecentralized-HTTPand thedecentralized-JMS
orchestrationsdueto reasonsmentionedin Section3.1.Thereis no
observabledifferencein theperformanceof thedecentralized-JMS
and theJMS-splitorchestrations.This indicatesthatthe total num-
berof concurrent requestsexecutingin thesystem is lower thanthe
sizeof the threadpool andhencenumberof blocked threadshave
no impacton systemperformancein termsof response time and
throughput.
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Variation of Performance with Service Time. Theexper-
iments on variationof servicetimewereconductedat a fixedrate
of 600 requests/minand a message size of 512 bytes. Figure 9
and Figure 10 show the effect of servicetime on responsetime
and throughput. Here again, the experimentsshow that central-
izedorchestration doesnot scalewith increasing service time. The
decentralized-HTTPorchestrationhasresponsetimethat is compa-
rable with that of decentralized-JMS but thethroughput is compar-
atively very poor. At theseloads alsothereis no difference in the
performanceof thedecentralized-JMSand theJMS-split orchestra-
tions. Thisagainreflectsthefactthatthetotalnumber of concurrent
requestsexecutingin thesystem is lower thanthesizeof thethread
pool in theseexperiments.

Other Experiments. Weconductedour experimentson anum-
ber of sample composite webservicesin addition to the FindRoute
service mentioned in this paper. The resultshave not been men-
tioned in thispaperfor thesakeof brevity. Weobservedthat decen-
tralization providesperformancebenefitsevenin caseswherethere
wasno inherent concurrency. The performancegain was mainly
due to reduction of network traffic anddistribution of computation
acrossdifferentnodes.

We alsocarried out preliminary experiments comparing decen-
tralizedorchestration with centralizedorchestration usinghorizon-
tally scaledloadbalanced servers.Thetotal numberof resourcesin
both the caseswerekeptthesame.We observedthatalthough hor-
izontal scaling and load balancing helps centralizedorchestration
perform better than decentralized orchestration at low loads, de-
centralized orchestration scalesbetter at higher loads. This canbe
againattributedto optimalutilization of threadsin a decentralized
orchestration systemasthey arenot blockedwaiting for responses
and allow largenumber of concurrent requeststo beexecuted.

5. RELATED WORK
As webservicesbecomeubiquitous,a lot of effort is beingspent

in studying differentwaysof composing themto create more use-
ful and complex services[6]. Four modelsof service composition
have been proposed[14, 24] basedon centralizedand distributed
flow of dataand control messagesbetweenthe services. Theonly
two modelsthatarerelevant for compositionof third party webser-
vices arethe centralized control flow centralizeddataflow model
(centralized orchestration) anddistributed control flow distributed
data flow model (decentralizedorchestration).

The ideaof usingdecentralizedcontrolof workflowsanddecen-
tralizedorchestration of webserviceshasbeenproposed in earlier
research. Benatallahet al. [6] describe a peer to peerexecution
pattern for orchestrating web servicesto overcomethe bottleneck
associatedwith having a centralizedcontroller. Theresponsibility
of coordinatingthe execution of a composite serviceis distributed
acrossthe providers which hostthe componentsof the composite
service. However, [6] doesnot describein detail theperformance
benefits, potential problemsandvariousbuild time andruntime is-
suesinvolvedin thisprocess.

Partitioningof theworkflow specificationusingstateand activity
charts to enabledistributedexecution accordingto original seman-
ticshasbeenstudied in[15]. A synchronizationschemethatguaran-
teescorrect synchronizationbetween workflow engines executing
thepartitions of a workflow is alsodeveloped. They alsoconsider
theissueof fault toleranceby providing exactly oncesemantics for
delivering synchronizationmessages.Their approachis very sim-
ilar to oursanda lot of interestinglessons can be learnt from their
effort. However, they do not considerworkflow-based composition
of webservices(whichis ourmainfocus)and theproblemsthat are
peculiar to this kind of composition.

Arjuna[19], a WFMS for CORBA-basedenvironments,decen-
tralizesboth theworkflow coordinationandactivity execution.This
executionmodel decentralizesthe coordinationof a processby in-
stalling “taskcontroller” objectsin different domainsthat execute
and manage tasksandcoordinate with eachother to deliver work-
flow routingfunctionality.

The RainManexecution model [18] separatestheresponsibility
of workflow coordination from activity execution by creating two
classes of entities, Sourcesand Performers. In effect, while the
coordination of eachprocessremainslocalized within aSourceob-
ject, theactualexecution of activities is decentralizedacross a net-
work of Performersover which Sourceshave very limited control.
This model is essentiallythe centralized orchestrationof webser-
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viceswith webservicesactingas the Performersandtheworkflow
acting# asthe Source.

A distributedworkflow control architecture has beenproposed
in [12], wherethe agents schedule and coordinate the workflow
instances. To executea workflow instance, the agents thatare re-
sponsible for executing the steps of that workflow instance have
to communicatewith each other transferring the entirestateof the
workflow from one agent to the other. The paper also describes
how eventsshould bepropagatedbetweenthe agentsasefficiently
as possible while still satisfyingthe failure handling andcoordi-
natedexecution requirements.

A lot of work has also been done in understanding and solv-
ing variousruntimeissuesin parallelanddistributedsystems. De-
centralized orchestrationrelies heavily on asynchronous messag-
ing. The benefits of asynchronous messaging, better throughput
and graceful shutdown, havebeenstudied in [11]. The importance
of the designcomponents, queues and threadpools for building
highly concurrent systems, have beendiscussedin [23] and the
benefitsand trade-off in concurrency have beenexploredin [22].

In our earlier work [17] we have studied the issues of concur-
rency andsynchronization in decentralization. Therewe describe
an algorithm to identify dif ferent forms of concurrency in a com-
positeservice specification andconsidersthe impact of dynamic
binding and faults on synchronization constructs. In [16] we give
analgorithm for partitioning theBPEL4WSprograms.

6. CONCLUSIONS AND FUTURE WORK
In this paperwe have identified variousbuild time and runtime

issuesin decentralizedorchestrationof compositeweb servicesand
alsodiscussed solutions to addressthem. We coveredissuesrang-
ing from code partitioning for decentralization to detaileddiscus-
sion of theserversthatparticipatein decentralizedexecution - their
threadpool design and communicationprotocols. We showedthat
the threadpool designcanbe a sourceof potential deadlocks and
that JMS is a moreefficient communication protocol than HTTP
for engine-to-enginecommunication in a decentralizedsetup. We
alsodiscussedbuild and runtimeissuesin errorhandling and error
recovery We presented an experimental evaluation of the perfor-
manceof decentralizationorchestrationascomparedto centralized
orchestrationin termsof throughput, averageresponsetime and
scalability. Our resultsreconfirmedthe performance benefits that
decentralizationprovides. We alsoexperimentally evaluatedtwo
different decentralization schemes and showed that at very high
loads there is a trade-off betweenthroughput and response time
with thetwo schemes.

With properdesign,optimalpartitioningand runtimesupportfor
error handling andrecovery, decentralizedorchestrationprovides
anattractive approach for executionof complex high performance
composite services.

Our current tool for code partitioning automatically generates
partitions with the spli tting optimization. We areworking on en-
hancing the tool to automatically partition fault handlersand in-
sert new fault handlers. We are also investigatingvarious archi-
tectures for error handling and error recovery in a decentralized
setup and quantify their effect on performance. In addition,we are
working on infrastructure for dynamic reconfiguration (based on
runtime monitoring) of composite servicesto obtainoptimal per-
formance. We plan to study the effect of deployment topologies
on performanceandwork on varioussynchronizationprotocols for
decentralizationin future.
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APPENDIX

A. SUMMARY OF BPEL4WS CONSTRUCTS AND NO-

TATION

Figure 11 givesthesubset of BPEL4WS constructsusedin this
paper along with a description of eachconstruct and the corre-
sponding notationswe haveused.
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