
Fine-grained, Structured Configuration Management
for Web Projects

Tien N. Nguyen
Dept. of EECS

Univ. of Wisconsin, Milwaukee

tien@cs.uwm.edu

Ethan V. Munson
Dept. of EECS

Univ. of Wisconsin, Milwaukee

munson@cs.uwm.edu

Cheng Thao
Dept. of EECS

Univ. of Wisconsin, Milwaukee

chengt@cs.uwm.edu

ABSTRACT
Researchers in Web engineering have regularly noted that existing
Web application development environments provide little support
for managing the evolution of Web applications. Key limitations of
Web development environments include line-oriented change mod-
els that inadequately represent Web document semantics and inabil-
ity to model changes to link structure or the set of objects making
up the Web application. Developers may find it difficult to grasp
how the overall structure of the Web application has changed over
time and may respond by using ad hoc solutions that lead to prob-
lems of maintainability, quality and reliability.

Web applications are software artifacts, and as such, can bene-
fit from advanced version control and software configuration man-
agement (SCM) technologies from software engineering. We have
modified an integrated development environment to manage the
evolution and maintenance of Web applications. The resulting envi-
ronment is distinguished by its fine-grained version control frame-
work, fine-grained Web content change management, and product
versioning configuration management, in which a Web project can
be organized at the logical level and its structure and components
are versioned in a fine-grained manner as well. This paper de-
scribes the motivation for this environment as well as its user in-
terfaces, features, and implementation.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Configuration management;
H.5.4 [Information Interfaces and Presentation]: Hypertext /
Hypermedia

General Terms
Documentation, Management

Keywords
Web engineering, version control, configuration management

1. INTRODUCTION
In only a decade, the World Wide Web has grown to significantly

affect all aspects of our lives. Organizations from industry, govern-
ment, education, entertainment, business, and services all use the
Web to improve and enhance their operations. Even traditional in-
formation and database systems have migrated to the Web.

Many organizations have successfully developed large and high-
quality Web sites, but others have failed or have struggled to avoid

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-844-X/04/0005.

major failures. While some of these failures result from a lack of
vision or short-sighted goals, others result from a flawed design
and development process or poor management of development ef-
forts [21]. Web developers commonly use ad hoc development pro-
cesses that lack rigor, systematic techniques, sound methodologies,
and quality assurance and may pay little attention to issues such
as requirements analysis, quality, performance evaluation, config-
uration management, maintainability, and scalability [22]. In fact,
Web development is often seen as being primarily an authoring task
rather than an application development task. Therefore, systematic,
disciplined approaches are only beginning to be applied to the de-
velopment of high-quality Web-based applications.

In response, the discipline of Web engineering has emerged, ad-
vocating a systematic approach to development of high quality Web-
based systems [39]. It promotes the establishment and use of sound
scientific, engineering and management principles in the develop-
ment, deployment and maintenance of Web-based systems. To a
large extent, Web engineering views Web development as an im-
portant variant of software development. As a result, many of the
tools and practices already used to produce other software are still
relevant, though Web engineering does have distinct practices that
arise from the nature of hypermedia and the Web [33, 45].

One task that is important for software and for the Web is the
management of the evolution and maintenance of Web-based ap-
plications. Dart [10, 11] has argued that Web systems would ben-
efit greatly from the use of techniques from software configura-
tion management (SCM). Web applications are software artifacts,
and as such can benefit by making use of advanced version con-
trol and software configuration management technologies. But Dart
has also pointed out that the evolution of Web applications presents
special challenges that are not well-addressed by existing SCM sys-
tems. For our purposes, the most important of these challenges are:

Variety of Types: Web systems are built from a wide diversity of
objects including documents in any of markup languages,
document templates, style sheets, images, streaming media,
animations, applets, and scripts. Unlike software engineer-
ing, where program source code is seen as the central artifact,
in Web systems it is difficult to identify one type of object as
most important. So, an SCM system for Web applications
must be compatible with a wide variety of file types, includ-
ing their templates and their corresponding editing tools. A
versioning model which corresponds to the logical structure
of these objects would also be desirable.

Intermixed Types: Furthermore, in Web applications it is com-
mon to intermix different object types in the same file. An
example would be an HTML file that contains embedded
CSS style commands and JavaScript. A versioning model
that understands this would be helpful.

433

Transparency: The semantics of URLs and browsers places con-
straints on deployed file locations that are less often seen in
traditional software. It can be useful to think about the sys-
tem as having a different logical structure than what is im-
posed by these other constraints. Thus, an SCM system that
can present logical models of the system structure, in addi-
tion to the structure of the deployed files will provide a more
transparent interface.

Developers: Web systems are developed by diverse teams ranging
from graphic artists to specialized software engineers. Thus,
the SCM system’s interface needs to be accessible to less
technical users or they will resist its use, leaving important
portions of the system outside the control of the SCM tools.

Rate of Change: Large Web systems appear to change faster than
traditional software systems. Some sites, such as news sites,
must show thousands of daily content changes. While sub-
stantive structural changes visible to end users may be more
rare on these sites, they still appear to happen at a faster
rate than in traditional software. Continuous fine-grained
evolution is thus a distinguishing characteristic of Web sys-
tems [32, 39]. Thus, Web-oriented SCM must help develop-
ers understand changes at a very fine-grained level.

In addition, fine-grained change management in SCM tools must
take into account the external and internal structures of a Web sys-
tem [10]. External structure (also called navigational structure)
of a Web system refers to the structure of a collection of Web
documents with respect to hyperlinks among them. Web docu-
ments in a Web system are logically related and connected to each
other via these hyperlinks. To facilitate the management of “dan-
gling” links, the versions of Web documents need to be kept in
synchrony. Therefore, the history of networks formed by Web doc-
uments and hyperlinks needs to be recorded as a Web application
evolves. This navigational structure should be distinguished from
the Web project’s structure and architecture [29]. SCM tools need
to allow developers to organize their Web project at the logical level
according to their choice of design methodologies, and to support
version control for the project’s structure and architecture as well.

A Web document, either static or dynamic, has some internal
structure. An HTML document has a tree-based syntactic struc-
ture, while program source code can be regarded as an abstract
syntax tree (AST) of syntactic units. Researchers have been taking
advantage of the internal structure of a Web page in order to pro-
cess, visualize, search and retrieve information [23, 25, 50]. As the
Internet moves toward XML [36], it is likely that Web documents
will gain structure with semantics of growing importance. These
structural semantics are described, at least to some extent, by Doc-
ument Type Definitions (DTD) or XML Schemas, which are also
evolving objects. So, Web content must evolve along with its struc-
tural rules. Managing the evolution of structures and contents of a
Web document will result in various benefits in processing, visual-
izing, and retrieving Web content. Traditional SCM tools are not
well-suited to this task because they often use a line-oriented model
of internal changes that disregards these internal structures of Web
documents. An SCM tool that can version data objects and handle
change management at the logical level is needed.

To investigate the application of SCM technology to Web en-
gineering, we have modified an extensible integrated development
environment, the Software Concordance (SC), to be suitable for
Web application development. To meet the requirements and to
address the problems mentioned above, SC uses a tree-based fine-
grained version control framework and a product versioning SCM

system to manage the evolution and maintenance of Web applica-
tions. The SC environment has been extended to support many
types of Web objects including HTML and XML documents, audio
clips, images, graphics and animations in Scalable Vector Graphics
(SVG) format, and program source code in Java, Java Applet, and
JavaScript. The environment can be further extended to integrate
additional editors supporting other types of documents.

A structure-oriented approach is used that represents all Web
documents as tree-structured objects that are versioned in a fine-
grained manner. On top of this fine-grained, tree-structured ver-
sioning framework, a product versioning SCM system, named Mol-
hado, has been built that provides configuration management sup-
port for Web development projects in which the Web project is
versioned as a whole entity. The Web system can be structured
and versioned at the logical level, independent of the physical lo-
cations of its components on the file system. A simple graphical
user interface (GUI) has been designed to help Web developers in
their versioning and configuration management tasks. Networks of
static Web documents and their links are also versioned in a fine-
grained manner. A fine-grained content change management tool
has been developed, allowing Web developers to track the history
and changes of any structural and logical unit in a Web document.

The next section will discuss related work on applying version
control and configuration management to Web engineering. Sec-
tion 3 describes the SC document representation. Our fine-grained
version control framework is presented in Section 4 and its applica-
tion to Web content change management is discussed in Section 5.
Section 6 covers the configuration management system of SC envi-
ronment while the SC editing system is described in Section 7 and
the last section presents our conclusions.

2. RELATED WORK
Researchers and vendors in the configuration management area

are taking different approaches to SCM for the Web. All have added
Web functions to their SCM tools by offering access to some or all
SCM functionality through a browser [11]. WebSynergy [60] pro-
vides a Web front-end into all of its existing SCM capabilities as
well as Web authoring tools. Similar to our approach, MKS’s We-
bIntegrity [59] integrates its version control facilities with an au-
thoring tool, while in Merant’s PVCS [35], version control is the
core part and is separate from authoring systems. However, both
of them version control at the file level. StarTeam [51] is Web-
enabled with the intention of tool integration. TrueChange [57]
provides content change management along with its version con-
trol, but with less focus on configuration management. Serena’s
eChangeMan [16] is focused on process management and change
tracking. Rational’s ClearCase [31] provides configuration man-
agement via “tagging” all files in the same configuration with the
same label for later retrieval. ClearQuest [7] is a change request
management tool of ClearCase, coordinating many developers in
changing Web documents. Content change management in Source-
Safe [49] is line-oriented. Computer Associate’s CCC/Harvest [5]
pays considerable attention to supporting collaboration among dis-
tributed development teams. Perforce [41] is more lightweight than
other SCM tools and it has the ability to migrate repositories from
other SCM tools such as CVS and PVCS into its internal repository.
Although all of these SCM tools have distinguished and valuable
features, they are focused on version control of files, rather than on
configuration management for a Web project as a whole. None of
them supports fine-grained change management at the logical level
and all content change management is line-oriented.

On the other hand, some Web application development environ-
ments (also called Web authoring environments or Web content man-

434

agement environments) have realized that SCM practices need to
be incorporated into their tools. FrontPage [19], Macromedia’s
DreamWeaver [15], and ColdFusion [8] have no built-in version
control support. Other tools, such as StoryServer [52] and Team-
Site [54], are designed to support many aspects of Web develop-
ment, with particular strength in supporting collaborative work.
TeamSite provides visual differencing tools so that two versions
of the same content can be examined side by side. Inso’s Dyn-
aBase [27] is an integrated content management and publishing
platform for Web applications. Similar to our approach, it is XML-
based, allowing better management and reuse of data. In Dyn-
aBase, configuration management use the “tagging” technique also
seen in ClearCase. Configurations act like a bill-of-materials for
the Web site, enumerating which items are included in the site and
which version of each item is in use. ArticleBase [1] integrates
content management and version control into an authoring and pub-
lishing system. Its version control support is on file basis and no
configuration management is provided. None of these systems al-
lows developers to structure their Web project and its objects at the
logical level depending on their choice.

OOHDM-Web [44], an environment for the development of Web-
based applications, is focused on the hypermedia design methodol-
ogy defined by the OOHDM model [45]. CGILua [6] is a tool
for developing dynamic HTML pages and manipulating input data
from forms, which enables the use of embedded code in normal
HTML files. RMCase [12] is a CASE tool that supports the com-
plete life cycle of a Web application. Its main goal is to sup-
port the process model for developing Web applications. Simi-
larly, the WebComposition process model and its related product
Eurovictor [20] focused on open process model that allows for
the integration of processes and reuse of components. The JES-
SICA system [2] provides a XML-based modeling language for
the automatic mapping from the design to Web-resources. Ariad-
neTool [37], a design toolkit for hypermedia applications, allows
a designer to generate dynamically XML templates. No version
control support is provided in these systems.

Many research in versioned hypermedia [24, 26, 61] commu-
nity have focused on version control in the presence of hyperlinks.
However, the main goals of their versioned hypermedia systems
often do not include supports for Web application development.
Therefore, supports for program source code are very limited. The
GAIA framework [30] combines open hypermedia and version-
ing paradigms. GAIA builds versioning mechanisms on top of
traditional open hypermedia architecture to support versioning for
links, documents and anchors. RHYTHM [34] is a prototypical dis-
tributed hypertext system that tackled problems arising from distri-
bution and versioning, both from a structural and from a cognitive
point of view. It is better suited for hypermedia systems than Web-
based applications where program source code is also an important
part. Similar to RHYTHM, HyperProp [48] provides versioning
supports for hypertext authoring systems without paying much at-
tention to program source code. HyperPro [40] provides versioning
supports of program objects as small as Pascal procedures. How-
ever, its goal is to map internal structure of a program into a hyper-
text and no program analysis is supported. In RCS-based Hyper-
Web [18], the smallest versionable object was a file.

To improve the authoring and browsing features for versioned
contents of Web pages, some researchers followed the language-
oriented approach. They have attempted to change the Uniform
Resource Locator (URL) of a Web page to include a version iden-
tifier [42, 46]. They use existing Web infrastructure such as forms,
Java applets, and plug-ins to create a user interface for revision
control systems on the server. Vitali and Durand proposed VTML

(versioned text markup language) [3] to express change operations
for HTML documents. For example, they introduced two new tags
(INS and DEL) to express insertion and deletion. The WebDAV
protocol [62] is an extension of the Hypertext Transfer Protocol
(HTTP) to support distributed authoring and versioning. It extends
HTTP to include versioning operations for Web pages. WebDAV
is designed to meet requirements [47] for distributed authoring and
versioning on the Web environment.

Although functionality is not consistent across the tools, most of
existing tools have very little or no support for configuration man-
agement. Configuration management support is limited to version
control of files. The similarities among them include supports for
Web and scripting languages, templates and stylesheets, version-
ing of files, roll-back of complete sites via backup, audit logging,
workflow support for collaborative work, commercial database in-
terfaces, and minimal change tracking and management support.
None of them cares about the external and internal structure of Web
content in the sense described in the previous section. Their content
change management is coarse-grained, with differencing done on a
line-by-line basis. None of them have ability to allow developers to
logically structure their Web projects.

3. REPRESENTING WEB CONTENT
Web content can consist of data objects, code, and component

libraries. Examples of data objects are data files, documents, im-
ages, audios, and videos. Code can be active controls and scripts
that can be embedded into an HTML page. Component libraries
are reusable codes such as JavaBeans and Microsoft Foundation
Classes. Among Web documents, hyperlinks exist that can point
to any page in the Web. Templates such as stylesheets, which are
written in some languages, enable separation of content and its pre-
sentation style. To provide fine-grained version control and content
management for static documents, the SC environment follows the
principle that textual information such as HTML, XML documents,
and program source code are treated as structured objects and ver-
sioned in a fine-grained manner, while binary information such as
audio clips, video clips, and component libraries are considered to
have no internal structure and are versioned on a file basis.

The SC’s document representation uses a structure-oriented ap-
proach where each Web document is a document tree composed of
document nodes (also referred to as structural units). Each docu-
ment node can be associated with multiple pairs of attribute name
and value. The document trees are versioned in a fine-grained man-
ner, which is described later. Structural units in a document carry
different logical senses depending on the document’s type. Pro-
gram source code and scripts are represented as ASTs, therefore, in
a program, a structural unit is equivalent to a syntactic unit such as
a class, method, or statement. On the other hand, in an HTML or
XML document, depending on the document’s DTD, a document
node might represent a section, paragraph, sentence, or phrase. In
either case, a document node represents the logical semantics en-
coded by an XML or HTML element. This document tree repre-
sentation is logically equivalent to the structure supported by Doc-
ument Object Model [13], though as described in the next section,
the implementation details are quite different. A conversion facility
is implemented to allow the import and export of DOM-compatible
documents into the SC’s representation. The maturity of XML
technology [63] allows SC to support a wide variety of information
types, including graphics and animation written in SVG [53], Uni-
fied Modeling Language (UML) [43] diagrams, Java programs, and
HTML documents with embedded scripts. The implementation of
this structure-oriented approach uses the Fluid Internal Represen-
tation [4], which is described in the next section.

435

1

2 3

4 5

1

2 3

5 *

1

2

64 5

v1
v2

v3

��� �
wing versions

v1 v2 v3

"con

tent"

n1n1

n2

"child� ���
" "pa

� ���
t"

""

n3

n4

n5

""

""

""

"old"

seq1

seq2

null

null

null

null

n1

n1

n2

n2

(modified)

n2 n3

seq1

n4 n5

seq2

"con

tent"

n1n1

n2

"child� ���
" "pa

� ���
t"

""

n3

n4

n5

""

""

"new"

seq1

seq3

null

null

null

n1

n1

n2

 n5

seq3

undefined

"con

tent"

n1n1

n2

"child� ���
" "pa

� ���
t"

""

n3

n4

n5

""

""

"old"

seq4

seq5

null

null

null

n1

n2

n2

n6

undefined

"" null n2

seq4

 n2 n4 n5

seq5

n6

Figure 1: Tree versioning

4. FINE-GRAINED VERSION CONTROL
The SC environment makes extensive use of the data and version

model supported by the Fluid system [4]. The primitive data model
used by Fluid is called the Fluid Internal Representation (IR). The
Fluid IR is based on two notions: nodes and slots. A node is the
basic unit of identity and is used to represent objects. A slot is a
location that can store a value, possibly a reference to a node. A
slot can exist in isolation but more typically slots are attached to
nodes, using an attribute. An attribute is a mapping from nodes to
slots. An attribute may have particular slots for some nodes and
map all other nodes to a default slot. The Fluid data model can
thus be regarded as an attribute table whose rows correspond to IR
nodes and columns correspond to attributes. The cells of the table
are slots. Once we add versioning, the table gets a third dimen-
sion: the version. There are three kinds of slots. A constant slot is
immutable; such a slot can only be given a value once, when it is
defined. A simple slot may be assigned even after it has been de-
fined. The third kind of slot is the versioned slot, which may have a
different value in different versions. Nodes are used to implement
structural units (document nodes) in Web documents, while slots
and attributes are used to represent attributes of a document node
and their values. For example, an href attribute has been defined
to represent hyperlinks in an HTML document. Links are created
by defining a value for an href attribute that is a URL. An addi-
tional attribute (anchor) is defined for anchors within documents.
Similarly, links can also be defined in a Java program since it is
represented by an AST. Importantly, this approach to binding hy-
perlinks to source code does not interfere with program analyses,
which ignore these hyperlink attributes. Also, the href attribute is
defined as versioned slots, therefore, the changes occurring to the
href attribute can be recorded over time.

In Fluid’s version model, a version is a point in a tree-structured
discrete time abstraction, rather than being a particular state of a
system component. From the user’s point of view, a uniform global
version space is maintained across the entire Fluid IR data model.
This is a form of product versioning [9], where there is one global
version space for the whole Web project, while in file-based ver-
sioning systems such as CVS [38] or RCS [56], each file has its
own version history. On the other hand, the Fluid version model
operates at a much finer internal granularity — the versioned slot
level — to effectively store, retrieve, compare, and construct ver-
sions. The version model is state-based. However, revisions and
variants are not distinguished. The set of versions is organized in

A B

D C

�
	 �
� ��� ���
c2#b"

�
	 ��� ��� ���
c2#c"

anchor="d"

�
	 �
� ��� �
�
c1#d"

anchor="c"

�����
1

�
�
���

(v1)

(v1)

(v1)

A B

D C

�
	 �
� ��� ���
c2#c"

�
	 ��� ��� ���
c2#c"

�
	 �
� ��� �
�
c1#d"

�����
1

�
�
���

(v1)

(v2)

(v1,v2)

�����
erte� � structure ! �
� �"	 � the change

(v1,v2)

�����
erte� � structure after the change

A B

D C

A B

D C

v1

v2

anchor="b"

anchor="b"

anchor= "d" anchor="c"

Figure 2: Versioning for hypertext structure

a tree, called the version tree, with the root of the tree being the
initial version of the Fluid IR world. The current version is the
version designating the current state of the Fluid IR world and any
version may be made current. Internally, every time a versioned
slot is assigned a (different) value, a new version is produced, de-
rived from and branching off the current version. However, from
the users’ point of view, a new version is only recorded if users
issue an explicit command.

A fine-grained tree-based versioning technique is developed for
document trees as well as a Web project’s structure, which is often
hierarchically organized. Trees are represented via nodes, slots, at-
tributes, and sequences. A sequence, which has a unique identifier,
is a container with slots of the same data type. Sequences may be
fixed or variable in size and share common slots together. A tree
is defined with two main attributes: 1) “children” attribute that for
each node gives the sequence of children for the node, and 2) “par-
ent” attribute that for each node gives its parent. The details are
illustrated via an example in Figure 1. In the example, “content”
attribute is also defined to hold string value for each node if any.
Assume that there are three versions: v1, v2, and v3. Versions v2
and v3 are branching off version v1. The shape of the tree at the
three versions is shown. Version v1 has five nodes numbered from
1 to 5. Version v2 has two differences from the version v1: node
4 was deleted and the content of node 5 was changed. Version v3
has an inserted node (node 6) and node 3 was deleted. The values
of versioned slots in the attribute table changed to reflect modifica-
tions to the tree in these versions. For example, at the version v2,
the “content” slot (i.e. the slot defined by the attribute “content”) of
node 5 contains a new value (the string “new”), and the “children”
slot of node 2 contains a reference to a new sequence object (seq3).
Seq3 has only one slot, which contains a reference to node 5 since
node 4 has been deleted. If there is a request on values of slots as-
sociated with node 4 at v2, a run-time error will be reported. Note
that other attributes might be defined for nodes.

A hypertext structure is the network consisting of a set of Web
documents and the hyperlinks connecting them in a Web system
(external Web pages are excluded). A hypertext structure is ver-
sioned in the same manner as versioning for document trees. Sup-
pose that we have two documents: doc1 and doc2, connected as in
Figure 2. At version v1, A links to B, B links to D, and D links to C.
Suppose that now node A points to node C, and a new version v2 is
created. That is, at the version v2, the value of the href attribute of
node A is “doc2#c”. It means that the link between A and B is no
longer present at v2, while C can be reached directly from A now.
The links between B and D, and between D and C are still valid.

436

Figure 3: History of a section

Depending on the current version, the correct destination node of a
link is implicitly determined. Therefore, the shape of the network
is properly exposed in the current version.

5. CONTENT CHANGE MANAGEMENT
Using the versioning scheme described in the previous section,

the SC environment provides fine-grained content change manage-
ment that allows Web developers to track the history of any struc-
tural unit (i.e. document node) in a Web document and to compare
two arbitrary versions of Web content at levels: 1) structural unit, 2)
Web document (except for binary data), and 3) the Web system in
both structured and line-oriented manners. In Figure 1, depending
on the current version, the shape of a subtree rooted at a document
node is exposed. For example, if the current version is set to v2, the
subtree at node 2 contains only itself and the child node 5 whose
“content” slot contains the new value. Based on this mechanism,
the SC environment manages the evolution of Web content at a fine
granularity. Web developers can select any structural unit in any
type of structured document (XML, HTML, Java, SVG, UML) dis-
played in the SC editor and to view its state in different versions.
Figure 3 shows a past version of a section in an XML document.
When users move the cursor to a different version, the correct con-
tent of that section is shown in the lower window. Note that the
section has not been created at the version v1, therefore, it is “dis-
abled”. Figure 4 shows the history of the loadDelta method of a
Java program. If developers select the root node of a document
tree, the history of the document as a whole will be displayed in
the same manner. Tracking the history of a Web system as a whole
will be discussed in Section 6.

In order to track the fine-grained changes between two arbitrary
versions, the SC environment employs a “dirty bit” mechanism in
Fluid version engine, called the Versioned Unit Slot Information
(VUSI). With the VUSI mechanism, SC can tell whether there is
a change in one or many attributes of a node between any two ar-
bitrary versions. It can also determine whether the structure of the

Figure 4: History of a method

subtree rooted at a node has been modified between any two ar-
bitrary versions. VUSI has “boolean” versioned slots attached to
nodes in a tree. The values of slots are set to false initially, indicat-
ing nothing has changed. When the values of attributes associated
with a node or the tree structure at the node are changed, the value
of the associated VUSI slot of the node will be set to true. Since a
VUSI slot is versioned, the mechanism works for any two arbitrary
versions (not necessarily predecessor or successor of each other).
The VUSI mechanism is also flexible enough to enable the cre-
ation of many VUSI slot types for any set of attributes (including
children and parent attributes) and to support a variety of behaviors
for marking the “dirty bits” for nodes. For example, a VUSI slot
type can be defined to track changes occurring to the href attribute,
while another type keeps an eye on bgcolor and fgcolor of a table.
Another example is that when an attribute of a node is modified, a
behavior can be defined such that it marks not only the VUSI slot
associated with the node, but also the VUSI slots of its ancestor
nodes. This behavior allows for the detection of changes occurring
in a subtree under a node.

Based on this mechanism, the SC environment includes a com-
parison (i.e. diff) tool which can show the differences between two
arbitrary versions of a document node, of a Web document, and of
the Web application as a whole. SC visually displays the differ-
ences in both structural and line-oriented manners. Figure 5 shows
structural changes in a Java program. A small icon is attached to a
document node icon, showing its changing status from version v7
to version v8: either it has been modified (a tree icon), inserted (an
“i” icon), deleted (an eraser icon), or moved (a “truck” icon). For
example, the methods “getRoot” and “setRoot” have been deleted
(see the left window), the methods “numChildren” and “parent”
have been added at version v8 (see the right window), while the
body of the method “doAnalysis” has been modified to add a new
expression (see the right window). Developers can also select a
structural unit and choose an option to display changes of a text
node in line-by-line fashion similar to ViewCVS [58]. A structural
comparison between two versions of an HTML document is shown

437

Figure 5: Java program comparison

Figure 6: HTML document comparison

in Figure 6. Some of document nodes have been modified in terms
of both their attributes and structures, for example, the “body” of
the document (an “a” icon and a tree icon are both attached to the
node icon). Meanwhile, the “table” node icon has only an “a” icon
since only the color attribute of the table has been changed.

Figure 7 shows the changes in the structure of a Web project
between two versions. As in the document comparison tool, the
icon next to a document’s entry shows the change in its status from
one version to another. With this tool, developers are able to track
changes in Web documents and program source code in a fine-
grained manner. Therefore, it helps them to maintain better their
Web applications. Also, incremental program analyses can take
advantages of this fine-grained change tracking mechanism to op-
timize processes. It is very cumbersome for existing SCM systems
that heavily depend on line-by-line comparison between versions
to build this sort of fine-grained Web content change management.

6. CONFIGURATION MANAGEMENT
Since Web documents are interrelated and connected to each

other via hyperlinks to form a Web application, version control

Figure 7: Project structure comparison

for Web content as individuals is not sufficient. A configuration
management system is needed to manage the evolution of a Web
application as a whole. The SCM system of the SC environment,
Molhado, is built on top the Fluid version model to provide config-
uration management services for developers to manage their Web
projects. This section describes the Molhado SCM system and how
a Web project can be logically structured and versioned.

6.1 Web project structuring and versioning

6.1.1 Important abstractions
Molhado’s three main abstractions are components, projects, and

configurations. A component is a logical unit that is named, can be
saved and loaded, and exists within the version space of a Web ap-
plication project (Web project for short). A component may be a
document, a class, a package, a module, a file, or a directory de-
pending on the development framework being used. In SC, the
Web documents described earlier are components whose internal
structure is versioned at a fine granularity. A project is a named
entity that represents the version history of a Web project. It is not
a version of the project, but rather is used to retrieve the correct
project version (including both structure and components). The
project contains within itself a tree to represent the project struc-
ture. Each node in the tree is associated with a slot that contains a
reference to a component. The project structure is versioned using
the same tree-based versioning scheme described in Section 4. A
configuration is a particular version of a project.

6.1.2 Web project structuring
Since a slot associated with a node in a project tree can contain

a reference to any component, the Web project and its components
can be organized logically. Figure 8 shows an example of a logical
structure of a Web project. Each node in the project’s tree has a
slot referencing to a component. In this example (the University of
Wisconsin (UW)’s Web site), there are directory components, Java
class components, and HTML document components. The “root”
directory component of this Web project consists of directory com-
ponent “code” and two HTML document components “index.html”
and “UW.html”. Nodes in the subtree at the “code” directory com-
ponent are associated with slots containing references to Java class
components A,B, C, D, and E. This forms a class hierarchy under
the “code” directory component. On the right hand side part of
Figure 8, the Web pages of this Web project are logically struc-
tured according to the UW’s campuses in the first level and then to
colleges and schools in the second level.

438

#%$ &�')(�*�+,& -.(�+%/10
onent

#%$ &�')(�*�+,&2-3(4+,/10
onent

class
(4+,/10

onent

5 +,#�'

A

B C

D E

(4+,#
e

&�+,+
t

index.html

6%798;: (4+,/10
onent

UW.html

wisc.html

uwm.html

eng.html

bus.htmlmath.html

uwgb.html

<>= ?A@�@CB9D EGFH?IFH<,B�J log
D <K?I=�B9D EGFH?GFL<>B

y

Legend:

M�N)O)P
slot

ass
N"Q)R

ation

betw
PKP>MSM�N)O)P

and slot

slot holding

a T P f
P T P,M�Q�PVULN

a Q
NXWZY�N9M�P>M�U abc Q�N9WZY�N9M
P,M�U

...

Figure 8: Logical organizations in a Web project

The directory-document hierarchy and components themselves
are all logical. This means that directories and documents do not
necessarily correspond to any directories and files on a file sys-
tem. Therefore, in Figure 8, the class component “A” (not a docu-
ment or a file) can be contained within directory component “code”.
This physical-independent organization of Web documents allows
for accessing to Web content without having to know the actual
physical address of the files. This ability is very important for large-
scale Web applications whose documents may be distributed across
many servers. Figure 8 also shows that Molhado has the ability to
support multiple logical organizations of a single Web project. For
example, program source code can be structured according to the
developers’ choice of design and implementation methodologies.
Meanwhile, HTML documents can be organized into either a nor-
mal directory-document hierarchy based on a file system, or a logi-
cal hierarchy depending on the chosen development model such as
OOHDM [45] or RMM [28]. Figure 9 shows the structure of the
Web project of our research in which Java programs are structured
as a package-class hierarchy and HTML documents are organized
into a directory-document hierarchy. New component types can be
easily added into Molhado to support different logical structures.

6.1.3 Web project versioning
Our project versioning approach, where a Web project is ver-

sioned as a whole, implies that versioning of a component is sub-
sidiary to that of the project to which the component belongs. This
is in contrast to the composition model [17] in most of existing
SCM systems, where the project version (i.e. configuration) is de-
pendent on the versions of each of its components. This project
versioning approach always assures the construction of a consis-
tent configuration since when a project version is chosen as the
current, the project’s tree will be correctly retrieved and versioned
slots associated with nodes in the tree will refer to appropriate com-
ponents at the current version as well. Then, the internal struc-
ture of each component and contents of slots will also be deter-
mined at the current version as mentioned in Section 4. This ap-
proach also avoids the complexity of using version selection rules
in composition-based SCM systems and traditional versioned hy-
permedia systems [61], which are used to select the correct versions
of components to be included in a version of a Web project.

Figure 9: Project structure window

6.2 The operational model
This section discusses the operational model for a user during a

transaction. Via GUIs, the user can open an existing Web project.
The user can view the history of the Web project in a project history
window. After selecting the working version, the SC system dis-
plays the project’s structure and its components in a project struc-
ture window (see Figure 9). The version that is initially displayed
in the project structure window is called the base version.

Via this window, the user can manipulate the project structure. If
any modification is made to the project structure or its components
at this base version, a new internal version in Fluid is temporarily
created as a branch from the base version (the word “modified” will
be attached to the base version’s name), and the project structure
window will now show information about this derived version. The
user can choose to discard any derived version (i.e. any changes to
the base version), or to issue a command to capture the project’s
state in a particular version. Intermediate internal versions from the
base version to the newly captured version are discarded. A unique
name within the Web project version space is assigned to the newly
captured version either by the user or by the system. Bookkeeping

439

information such as dates, authors, and descriptions can be attached
to the new version for later retrieval. The captured version plays the
role of a checkpoint version which the user can retrieve and refer to
and becomes the new base version of the project structure window.
However, no data is saved after a capture.

While working on one version of a Web project, the user can
always switch to work on any other version. Switching to work
or to view a different version can be done explicitly or implicitly,
whether or not the current working version has been captured. If
the user moves the mouse focus to a component editing window,
or to a project structure window, the working version is automat-
ically set to the version that the window is displaying. The user
can also explicitly select a different version from the project his-
tory window and open it. Any windows showing the old version
are still available should the user want to do additional work on
that version. It implies that there may exist many windows display-
ing different versions (captured or uncaptured) in the same editing
session. The user is not only allowed to view, but also to modify
the new working version. In this case, an additional derived version
will be branched off from the new working version. This switching
feature allows the user to work on many versions at the same time
during one session.

The user may commit changes to the project at any time. Commit
is the command with which the user saves all changes made during
an editing session since the previous commitment. Upon issuing
this command, the user is asked which uncaptured versions should
be saved and the chosen versions are then saved to a file system.
Only the differences are stored. The user may also save complete
version snapshots, which can improve version access time. In cur-
rent system, each user can store his/her own data files for a Web
project anywhere in a file system. Each user does not see changes
from others. Therefore, no locking mechanism is needed. Users
can share the data files and using merging tools to collaborate. A
better collaboration mechanism is being implemented using a cen-
tral versioning repository similar to CVS [38] with an “official”
version graph. To branch from a version, the user just needs to copy
data files for that version to his/her own workspace. The user can
create many “private” versions. Finally, the user can copy mean-
ingful versions back to the central repository.

7. SC EDITING SYSTEM
This section describes the details of the SC editing system for

Web content. The editing system is an integration of a structured
document editor for XML, HTML, and plain text documents, a
syntax-recognizing Java program editor, an SVG graphic and an-
imation editor, and a UML editor. The SC environment is compat-
ible with XML-based document editing environments since it sup-
ports the integration of editors for new document types whose in-
ternal representation is XML-compatible. For example, the Thorn
UML editor [55] and DrawSWF SVG editor [14] were easily in-
tegrated into the SC editor because their document representations
are XML-based. Integration requires only that a new editor fol-
lows a simple plug-in protocol. The SC environment uses a Docu-
ment Object Model (DOM) [13] parser to import XML-based doc-
uments, converts the DOM trees into the SC document tree repre-
sentation, and then version controls them as described earlier.

All Web documents and their versions mentioned in Section 3
are stored according to the Fluid’s persistence model [4]. In the
Fluid’s persistence model, a persistent entity is the basic unit of
information that can be stored and then loaded. The persistence
model uses the forward direct delta technique to store differences
between versions. The data files for versioned persistence are im-
mutable and may be freely duplicated or distributed using any file

Figure 10: Intermixing object types

sharing protocol. At any version, developers can import and export
a Web project’s documents (stored in the Fluid persistence repre-
sentation) including program source code, UML diagrams, SVG
images, animations, and graphics from and to XML format. This
feature is obviously important since it helps users work with tools
outside the SC environment.

A user edits XML, HTML and Java programs in the same man-
ner. The user interacts with the system using a menu bar, a tool bar,
and contextual pop up menus. When a user selects a Web document
from the project structure window, an appropriate editor is invoked
for the document. To display a document, a default CSS-like style
sheet is selected by the system for the document unless it has one.
The presentation of the document is built based on the document
tree and the style information. The user can choose to open a doc-
ument with any appropriate style sheet. To edit a document, the
user moves the mouse and selects any structural unit of the docu-
ment that needs to be edited. Then, via the commands in the pop
up menu, the user can choose to edit the content of that structural
unit presented in the selected portion of the presentation, or to edit
the documentation associated with that unit. The SC editor invokes
the node editor, which is a simple ASCII text editor. The editor
unparses the node and displays the resulting textual representation
of the node to be edited. The user edits the text and returns to the
document window. Depending on the type of the document that
is being edited, the editor invokes either an XML, HTML parser
or a Java parser to incrementally parse the modified text, and then
creates new nodes and attaches them to the document tree. If there
exists any errors in the modified text, error messages are displayed
and the user can fix them.

The SC editing environment also allows a user to edit image or
graphic documentation, and then to associate them with any struc-
tural unit in a Java program. This feature allows for intermixing
different object types in the same document, which is very com-
mon in Web content. Figure 10 shows a Java program intermixing
with graphics, texts, and audio clips. The user invokes an image
and graphic editor. When the user finishes with his images, the SC

440

Figure 11: HTML document editor

editor adds the resulting images into the document window. To as-
sociate audio documentation with a structural unit, the user invokes
an audio selection dialog to choose an audio file. Image, audio,
and graphic documentation file names are contained in special at-
tributes of document nodes. In addition, the user can create, edit
a hyperlink, and attach it to any structural unit in a Java program
using steps similar to the ones needed to edit the documentation.
The user can enter a URL or choose a file from a selection dialog.
Similar to HTML documents, hyperlinks in programs are supported
via the href attribute as described earlier. This approach to binding
multimedia annotations and hyperlinks to source code does not in-
terfere with program compilation process since it ignores the slots
that support multimedia documentation and hyperlinks.

For an HTML document, the user is also able to preview the
document’s appearance as if it were displayed via a Web browser.
Figure 11 displays the contents of an HTML document for two dif-
ferent versions. Similarly, Figure 12 shows two versions of the SC’s
architecture description document in SVG format. All graphic, im-
age, and animation objects in SVG format are versioned in the same
manner as XML documents. To edit a UML diagram, the user in-
vokes the UML diagram editor, which is a specialized graphic edi-
tor for class diagrams, use case diagrams, sequence diagrams, and
activity diagrams.

8. CONCLUSION
Systematic approaches to Web engineering are becoming increas-

ingly necessary as Web applications grow and have longer life-
times. The research presented here is based in the belief that man-
aging the evolution of Web applications is a task that requires so-
phisticated configuration management tools. As recently as the
year 2000, it was asserted that very few companies with mission-
critical Web system were using SCM tools [11], and that others
were developing their own CM tools and techniques because they
were not fully aware of the state of the art in SCM. At the same
time, researchers in the SCM area have paid little attention to bring-
ing advanced technologies to Web engineering. Most existing SCM
and version control tools that are used are focused on version con-
trol of individual files with limited supports for content change and
configuration management of a Web project.

We have described a fine-grained version control and structured
configuration management system (Molhado) and discussed how
it is well-suited to managing the evolution of a Web application
project. Molhado is a core part of the Software Concordance en-

Figure 12: SVG graphic and animation editor

vironment, which was modified by this research to support Web
development. Its versioning scheme supports content change man-
agement that helps Web authors manage the evolution of their Web
project at the logical level and at fine granularity. The configuration
management services help Web developers to logically structure
and manage a Web project and its components. Multiple logical
organizations of a Web project can exist in the same version. The
SC editor prototype provides a GUI-based environment for brows-
ing and editing versions of a project and its components. A user can
work on multiple versions simultaneously. SC is flexible and exten-
sible to support many other types of Web content. An experimental
study is being conducted to evaluate the performance, efficiency,
and usability of the system.

9. REFERENCES
[1] ArticleBase. http://www.runningstart.com/.
[2] R. Barta and M. Schranz. JESSICA: an object-oriented

hypermedia publishing processor. Computer Networks and
ISDN Systems, 30:239–249, 1998.

[3] L. Bendix and F. Vitali. VTML for Fine-grained Change
tracking in Editing Structured Documents. In Proceedings of
the Software Configuration Management Workshop. Springer
Verlag, 1999.

[4] J. Boyland, A. Greenhouse, and W. L. Scherlis. The Fluid IR:
An internal representation for a software engineering
environment. In preparation. For information see
http://www.fluid.cs.cmu.edu.

[5] CCC/Harvest. http://www3.ca.com/.
[6] Cgilua 3.2. http://www.tecgraf.puc-rio.br/cgilua/.
[7] ClearQuest.

www.rational.com/products/clearquest/index.jsp.
[8] ColdFusion. http://www.allaire.com/.
[9] R. Conradi and B. Westfechtel. Version models for software

configuration management. ACM Computing Surveys
(CSUR), 30(2):232–282, 1998.

[10] S. Dart. Content Change Management: Problems for Web
Systems. In Proceedings of the Software Configuration
Management Workshop, SCM-9. Springer Verlag, 1999.

[11] S. Dart. Configuration Management: the missing link in Web
engineering. Artech House, 2000.

[12] A. Diaz, T. Isakowitz, V. Maiora, and G. G. RMC: A tool to
design WWW applications. The World Wide Web, 1995.

441

[13] Document Object Model. http://www.w3.org/dom/.
[14] DrawSWF. drawswf.sourceforge.net.
[15] Macromedia DreamWeaver. http://www.dreamweaver.com/.
[16] eChangeMan. http://www.serena.com/.
[17] P. Feiler. Configuration management models in commercial

environments. Technical Report CMU/SEI-91-TR-7,
Software Engineering Institute, 1991.

[18] J. C. Ferrans, D. W. Hurst, M. A. Sennett, B. M. Covnot,
W. Ji, P. Kajka, and W. Ouyang. HyperWeb: a framework for
hypermedia-based environments. In Proceedings of the
Symposium on Software Development Environments, pages
1–10. ACM Press, 1992.

[19] Microsoft FrontPage. http://www.microsoft.com/.
[20] M. Gaedke and G. Graf. Development and Evolution of

Web-applications Using the WebComposition Process
Model. In Proceedings of 2nd Web Engineering Workshop at
the 9th International World Wide Web Conference
(WWW9-WebE), 2000.

[21] A. Ginige and S. Murugesan. The Essence of Web
Engineering. IEEE Multimedia, 8(2):22–25, April 2001.

[22] A. Ginige and S. Murugesan. Web Engineering: An
Introduction. IEEE Multimedia, 8(2):14–18, April 2001.

[23] E. J. Glover, K. Tsioutsiouliklis, S. Lawrence, D. M.
Pennock, and G. W. Flake. Using Web Structure for
Classifying and Describing Web Pages. In WWW11: 11th
International World Wide Web Conference, 2002.

[24] J. Griffiths, D. Millard, H. Davis, D. Michaelides, and
M. Weal. Reconciling versioning and context in hypermedia
structure servers. In Proceedings of the 1st International
Metainformatics Symposium, 2002.

[25] S. Gupta, G. Kaiser, D. Neistadt, and P. Grimm. DOM-based
Content Extraction of HTML Documents. In WWW12: 12th
International World Wide Web Conference, 2003.

[26] D. L. Hicks, J. J. Leggett, P. J. Nurnberg, and J. L. Schnase.
A hypermedia version control framework. ACM Transactions
on Information Systems (TOIS), 16(2):127–160, 1998.

[27] Dynabase content management.
http://www.rbii.com/products/dynabase/.

[28] T. Isakowitz, E. Stohr, and P. Blasubramaninan. RMM: A
Methodology for Structured Hypermedia Design.
Communications of the ACM, 38(8):34–44, 1995.

[29] M. D. Jacyntho, D. Schwabe, and G. Rossi. A Software
Architecture for Structuring Complex Web Applications.
Journal of Web Engineering, 1(1):37–60, 2002.

[30] T. Kejser and K. Gronbak. The GAIA Framework: Version
Support In Web Based Open Hypermedia. In proceedings of
IADIS International Conference on WWW/Internet, 2003.

[31] D. Leblang. The CM challenge: Configuration management
that works. Configuration Management, 2, 1994.

[32] D. Lowe. Web Engineering or Web Gardening. WebNet
Journal, 1999.

[33] D. Lowe and J. Eklund. Client Needs and the Design Process
in Web Projects. Journal of Web Engineering, 1(1):23–36,
2002.

[34] C. Maioli, S. Sola, and F. Vitali. Versioning for Distributed
Hypertext Systems. In Proceedings of ACM Conference on
Hypertext and Hypermedia, 1994.

[35] PVCS. http://www.merant.com/.
[36] L. Mignet, D. Barbosa, and P. Veltri. The XML Web: a First

Study. In WWW12: 12th International World Wide Web
Conference, 2003.

[37] S. Montero, P. Daz, and I. Aedo. A design toolkit for
hypermedia applications. In Proceedings of the International
Conference on Web Engineering-ICWE, 2003.

[38] T. Morse. CVS. Linux Journal, 1996(21es):3, 1996.
[39] S. Murugesan, Y. Deshpande, S. Hansen, and A. Ginige.

Web Engineering: A new discipline for Web-Based System
Development. In Web Engineering: Managing Diversity and
Complexity of Web Application Development (LNCS 2016).
Springer Verlag, 2001.

[40] K. Østerbye. Structural and cognitive problems in providing
version control for hypertext. In Proceedings of the ACM
Conference on Hypertext, pages 33–42, 1992.

[41] Perforce. http://www.perforce.com/.
[42] R. Pettengill and G. Arango. Four lessons learned from

managing WWW digital libraries. In Proceedings of
Conference on Theory and Practice of Digital Libraries,
1995.

[43] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified
Modeling Language Reference Manual. Object Technology
Series. Addison-Wesley, 1998.

[44] D. Schwabe and R. de Almeida Pontes. A Method-Based
Web Application Development Environment. In Proceedings
of the Web Engineering Workshop, WWW8 Conference,
1999.

[45] D. Schwabe and G. Rossi. An Object Oriented Approach to
Web-based Application Design. Theory and Practice of
Object Systems, 4(4), 1998.

[46] J. Simonson, D. Berleant, X. Zhang, M. Xie, and H. Vo.
Version augmented URIs for reference permanence via an
Apache module design. In Proceedings of the WWW7
Conference, Computer Networks and ISDN Systems, 1998.

[47] J. A. Slein, F. Vitali, E. J. Whitehead, Jr., and D. G. Durand.
Requirements for distributed authoring and versioning on the
World Wide Web. StandardView, 5(1):17–24, 1997.

[48] L. Soares, G. S. Filho, R. Rodrigues, and D. Muchaluat.
Versioning support in HyperProp system. Multimedia Tools
and Applications, 8(3):325–339, 1999.

[49] Microsoft Visual SoureSafe.
http://msdn.microsoft.com/ssafe/prodinfo/overview.asp.

[50] E. Spertus and L. A. Stein. Squeal: A Structured Query
Language for the Web. In WWW9: 9th International World
Wide Web Conference, 2000.

[51] StarTeam. http://www.borland.com/starteam/.
[52] StoryServer. http://www.vignette.com/.
[53] Scalable vector graphics.

http://www.w3c.org/Graphics/SVG.
[54] TeamSite. http://www.interwoven.com/.
[55] Thorn UML editor. http://thorn.sphereuslabs.com/.
[56] W. F. Tichy. RCS - a system for version control. Software -

Practice and Experience, 15(7):637–654, 1985.
[57] TrueChange. http://www.truesoft.com/.
[58] Viewing CVS Repositories. viewcvs.sourceforge.net/.
[59] WebIntegrity. http://www.mks.com/.
[60] WebSynergy. http://www.continuus.com/.
[61] E. J. Whitehead, Jr. An Analysis of the Hypertext Versioning

Domain. PhD thesis, University of California – Irvine, 2000.
[62] E. J. Whitehead, Jr. WebDAV and DeltaV: collaborative

authoring, versioning, and configuration management for the
Web. In Proceedings of the ACM conference on Hypertext
and Hypermedia, pages 259–260. ACM Press, 2001.

[63] W3C XML. http://www.w3c.org/XML.

442

